Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
P
python
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Container registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Tom Rink
python
Commits
87a67485
Commit
87a67485
authored
2 years ago
by
tomrink
Browse files
Options
Downloads
Patches
Plain Diff
snapshot...
parent
8a6e79db
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
modules/deeplearning/srcnn_cld_frac.py
+142
-28
142 additions, 28 deletions
modules/deeplearning/srcnn_cld_frac.py
with
142 additions
and
28 deletions
modules/deeplearning/srcnn_cld_frac.py
+
142
−
28
View file @
87a67485
...
...
@@ -331,8 +331,6 @@ class SRCNN:
else
:
# Half res upsampled to full res:
tmp
=
upsample
(
tmp
)
tmp
=
normalize
(
tmp
,
param
,
mean_std_dct
)
if
DO_ADD_NOISE
:
tmp
=
add_noise
(
tmp
,
noise_scale
=
NOISE_STDDEV
)
data_norm
.
append
(
tmp
)
for
param
in
data_params_full
:
...
...
@@ -343,8 +341,6 @@ class SRCNN:
# Full res:
tmp
=
tmp
[:,
slc_y
,
slc_x
]
tmp
=
normalize
(
tmp
,
param
,
mean_std_dct
)
if
DO_ADD_NOISE
:
tmp
=
add_noise
(
tmp
,
noise_scale
=
NOISE_STDDEV
)
data_norm
.
append
(
tmp
)
# ---------------------------------------------------
tmp
=
input_data
[:,
label_idx
,
:,
:]
...
...
@@ -359,13 +355,6 @@ class SRCNN:
tmp
=
tmp
[:,
slc_y
,
slc_x
]
if
label_param
!=
'
cloud_probability
'
:
tmp
=
normalize
(
tmp
,
label_param
,
mean_std_dct
)
if
DO_ADD_NOISE
:
tmp
=
add_noise
(
tmp
,
noise_scale
=
NOISE_STDDEV
)
else
:
if
DO_ADD_NOISE
:
tmp
=
add_noise
(
tmp
,
noise_scale
=
NOISE_STDDEV
)
tmp
=
np
.
where
(
tmp
<
0.0
,
0.0
,
tmp
)
tmp
=
np
.
where
(
tmp
>
1.0
,
1.0
,
tmp
)
data_norm
.
append
(
tmp
)
# ---------
data
=
np
.
stack
(
data_norm
,
axis
=
3
)
...
...
@@ -562,12 +551,11 @@ class SRCNN:
self
.
train_accuracy
=
tf
.
keras
.
metrics
.
SparseCategoricalAccuracy
(
name
=
'
train_accuracy
'
)
self
.
test_accuracy
=
tf
.
keras
.
metrics
.
SparseCategoricalAccuracy
(
name
=
'
test_accuracy
'
)
@tf.function
def
train_step
(
self
,
mini_batch
):
inputs
=
[
mini_batch
[
0
]]
labels
=
mini_batch
[
1
]
@tf.function
(
input_signature
=
[
tf
.
TensorSpec
(
None
,
tf
.
float32
),
tf
.
TensorSpec
(
None
,
tf
.
float32
)])
def
train_step
(
self
,
inputs
,
labels
):
labels
=
tf
.
squeeze
(
labels
,
axis
=
[
3
])
with
tf
.
GradientTape
()
as
tape
:
pred
=
self
.
model
(
inputs
,
training
=
True
)
pred
=
self
.
model
(
[
inputs
]
,
training
=
True
)
loss
=
self
.
loss
(
labels
,
pred
)
total_loss
=
loss
if
len
(
self
.
model
.
losses
)
>
0
:
...
...
@@ -583,20 +571,20 @@ class SRCNN:
return
loss
@tf.function
def
test_step
(
self
,
mini_batch
):
inputs
=
[
mini_batch
[
0
]]
labels
=
mini_batch
[
1
]
pred
=
self
.
model
(
inputs
,
training
=
False
)
@tf.function
(
input_signature
=
[
tf
.
TensorSpec
(
None
,
tf
.
float32
),
tf
.
TensorSpec
(
None
,
tf
.
float32
)])
def
test_step
(
self
,
inputs
,
labels
):
labels
=
tf
.
squeeze
(
labels
,
axis
=
[
3
])
pred
=
self
.
model
([
inputs
],
training
=
False
)
t_loss
=
self
.
loss
(
labels
,
pred
)
self
.
test_loss
(
t_loss
)
self
.
test_accuracy
(
labels
,
pred
)
def
predict
(
self
,
mini_batch
):
inputs
=
[
mini_batch
[
0
]]
labels
=
mini_batch
[
1
]
pred
=
self
.
model
(
inputs
,
training
=
False
)
# @tf.function(input_signature=[tf.TensorSpec(None, tf.float32), tf.TensorSpec(None, tf.float32)])
# decorator commented out because pred.numpy(): pred not evaluated yet.
def
predict
(
self
,
inputs
,
labels
):
pred
=
self
.
model
([
inputs
],
training
=
False
)
# t_loss = self.loss(tf.squeeze(labels), pred)
t_loss
=
self
.
loss
(
labels
,
pred
)
self
.
test_labels
.
append
(
labels
)
...
...
@@ -659,7 +647,7 @@ class SRCNN:
trn_ds
=
trn_ds
.
batch
(
BATCH_SIZE
)
for
mini_batch
in
trn_ds
:
if
self
.
learningRateSchedule
is
not
None
:
loss
=
self
.
train_step
(
mini_batch
)
loss
=
self
.
train_step
(
mini_batch
[
0
],
mini_batch
[
1
]
)
if
(
step
%
100
)
==
0
:
...
...
@@ -674,7 +662,7 @@ class SRCNN:
tst_ds
=
tf
.
data
.
Dataset
.
from_tensor_slices
((
data_tst
,
label_tst
))
tst_ds
=
tst_ds
.
batch
(
BATCH_SIZE
)
for
mini_batch_test
in
tst_ds
:
self
.
test_step
(
mini_batch_test
)
self
.
test_step
(
mini_batch_test
[
0
],
mini_batch_test
[
0
]
)
with
self
.
writer_valid
.
as_default
():
tf
.
summary
.
scalar
(
'
loss_val
'
,
self
.
test_loss
.
result
(),
step
=
step
)
...
...
@@ -703,7 +691,7 @@ class SRCNN:
ds
=
tf
.
data
.
Dataset
.
from_tensor_slices
((
data
,
label
))
ds
=
ds
.
batch
(
BATCH_SIZE
)
for
mini_batch
in
ds
:
self
.
test_step
(
mini_batch
)
self
.
test_step
(
mini_batch
[
0
],
mini_batch
[
1
]
)
print
(
'
loss, acc:
'
,
self
.
test_loss
.
result
().
numpy
(),
self
.
test_accuracy
.
result
().
numpy
())
print
(
'
------------------------------------------------------
'
)
...
...
@@ -980,6 +968,132 @@ def analyze(file='/Users/tomrink/cld_opd_frac.npy'):
[
precision_0
,
precision_1
,
precision_2
],
[
mcc_0
,
mcc_1
,
mcc_2
]
def
analyze_5cat
(
file
=
'
/Users/tomrink/cld_opd_frac.npy
'
):
tup
=
np
.
load
(
file
,
allow_pickle
=
True
)
lbls
=
tup
[
0
]
pred
=
tup
[
1
]
# prob_0 = tup[2]
# prob_1 = tup[3]
# prob_2 = tup[4]
lbls
=
lbls
.
flatten
()
pred
=
pred
.
flatten
()
np
.
histogram
(
lbls
,
bins
=
5
)
np
.
histogram
(
pred
,
bins
=
5
)
new_lbls
=
np
.
zeros
(
lbls
.
size
,
dtype
=
np
.
int32
)
new_pred
=
np
.
zeros
(
pred
.
size
,
dtype
=
np
.
int32
)
new_lbls
[
lbls
==
0
]
=
0
new_lbls
[
lbls
==
1
]
=
1
new_lbls
[
lbls
==
2
]
=
1
new_lbls
[
lbls
==
3
]
=
1
new_lbls
[
lbls
==
4
]
=
2
new_pred
[
pred
==
0
]
=
0
new_pred
[
pred
==
1
]
=
1
new_pred
[
pred
==
2
]
=
1
new_pred
[
pred
==
3
]
=
1
new_pred
[
pred
==
4
]
=
2
np
.
histogram
(
new_lbls
,
bins
=
3
)
np
.
histogram
(
new_pred
,
bins
=
3
)
lbls
=
new_lbls
pred
=
new_pred
print
(
np
.
sum
(
lbls
==
0
),
np
.
sum
(
lbls
==
1
),
np
.
sum
(
lbls
==
2
))
msk_0_1
=
lbls
!=
2
msk_1_2
=
lbls
!=
0
msk_0_2
=
lbls
!=
1
lbls_0_1
=
lbls
[
msk_0_1
]
pred_0_1
=
pred
[
msk_0_1
]
pred_0_1
=
np
.
where
(
pred_0_1
==
2
,
1
,
pred_0_1
)
# ----
lbls_1_2
=
lbls
[
msk_1_2
]
lbls_1_2
=
np
.
where
(
lbls_1_2
==
1
,
0
,
lbls_1_2
)
lbls_1_2
=
np
.
where
(
lbls_1_2
==
2
,
1
,
lbls_1_2
)
pred_1_2
=
pred
[
msk_1_2
]
pred_1_2
=
np
.
where
(
pred_1_2
==
0
,
-
9
,
pred_1_2
)
pred_1_2
=
np
.
where
(
pred_1_2
==
1
,
0
,
pred_1_2
)
pred_1_2
=
np
.
where
(
pred_1_2
==
2
,
1
,
pred_1_2
)
pred_1_2
=
np
.
where
(
pred_1_2
==
-
9
,
1
,
pred_1_2
)
# ----
lbls_0_2
=
lbls
[
msk_0_2
]
lbls_0_2
=
np
.
where
(
lbls_0_2
==
2
,
1
,
lbls_0_2
)
pred_0_2
=
pred
[
msk_0_2
]
pred_0_2
=
np
.
where
(
pred_0_2
==
2
,
1
,
pred_0_2
)
cm_0_1
=
confusion_matrix_values
(
lbls_0_1
,
pred_0_1
)
cm_1_2
=
confusion_matrix_values
(
lbls_1_2
,
pred_1_2
)
cm_0_2
=
confusion_matrix_values
(
lbls_0_2
,
pred_0_2
)
true_0_1
=
(
lbls_0_1
==
0
)
&
(
pred_0_1
==
0
)
false_0_1
=
(
lbls_0_1
==
1
)
&
(
pred_0_1
==
0
)
true_no_0_1
=
(
lbls_0_1
==
1
)
&
(
pred_0_1
==
1
)
false_no_0_1
=
(
lbls_0_1
==
0
)
&
(
pred_0_1
==
1
)
true_0_2
=
(
lbls_0_2
==
0
)
&
(
pred_0_2
==
0
)
false_0_2
=
(
lbls_0_2
==
1
)
&
(
pred_0_2
==
0
)
true_no_0_2
=
(
lbls_0_2
==
1
)
&
(
pred_0_2
==
1
)
false_no_0_2
=
(
lbls_0_2
==
0
)
&
(
pred_0_2
==
1
)
true_1_2
=
(
lbls_1_2
==
0
)
&
(
pred_1_2
==
0
)
false_1_2
=
(
lbls_1_2
==
1
)
&
(
pred_1_2
==
0
)
true_no_1_2
=
(
lbls_1_2
==
1
)
&
(
pred_1_2
==
1
)
false_no_1_2
=
(
lbls_1_2
==
0
)
&
(
pred_1_2
==
1
)
tp_0
=
np
.
sum
(
true_0_1
).
astype
(
np
.
float64
)
tp_1
=
np
.
sum
(
true_1_2
).
astype
(
np
.
float64
)
tp_2
=
np
.
sum
(
true_0_2
).
astype
(
np
.
float64
)
tn_0
=
np
.
sum
(
true_no_0_1
).
astype
(
np
.
float64
)
tn_1
=
np
.
sum
(
true_no_1_2
).
astype
(
np
.
float64
)
tn_2
=
np
.
sum
(
true_no_0_2
).
astype
(
np
.
float64
)
fp_0
=
np
.
sum
(
false_0_1
).
astype
(
np
.
float64
)
fp_1
=
np
.
sum
(
false_1_2
).
astype
(
np
.
float64
)
fp_2
=
np
.
sum
(
false_0_2
).
astype
(
np
.
float64
)
fn_0
=
np
.
sum
(
false_no_0_1
).
astype
(
np
.
float64
)
fn_1
=
np
.
sum
(
false_no_1_2
).
astype
(
np
.
float64
)
fn_2
=
np
.
sum
(
false_no_0_2
).
astype
(
np
.
float64
)
recall_0
=
tp_0
/
(
tp_0
+
fn_0
)
recall_1
=
tp_1
/
(
tp_1
+
fn_1
)
recall_2
=
tp_2
/
(
tp_2
+
fn_2
)
precision_0
=
tp_0
/
(
tp_0
+
fp_0
)
precision_1
=
tp_1
/
(
tp_1
+
fp_1
)
precision_2
=
tp_2
/
(
tp_2
+
fp_2
)
mcc_0
=
((
tp_0
*
tn_0
)
-
(
fp_0
*
fn_0
))
/
np
.
sqrt
((
tp_0
+
fp_0
)
*
(
tp_0
+
fn_0
)
*
(
tn_0
+
fp_0
)
*
(
tn_0
+
fn_0
))
mcc_1
=
((
tp_1
*
tn_1
)
-
(
fp_1
*
fn_1
))
/
np
.
sqrt
((
tp_1
+
fp_1
)
*
(
tp_1
+
fn_1
)
*
(
tn_1
+
fp_1
)
*
(
tn_1
+
fn_1
))
mcc_2
=
((
tp_2
*
tn_2
)
-
(
fp_2
*
fn_2
))
/
np
.
sqrt
((
tp_2
+
fp_2
)
*
(
tp_2
+
fn_2
)
*
(
tn_2
+
fp_2
)
*
(
tn_2
+
fn_2
))
acc_0
=
np
.
sum
(
lbls_0_1
==
pred_0_1
)
/
pred_0_1
.
size
acc_1
=
np
.
sum
(
lbls_1_2
==
pred_1_2
)
/
pred_1_2
.
size
acc_2
=
np
.
sum
(
lbls_0_2
==
pred_0_2
)
/
pred_0_2
.
size
print
(
acc_0
,
recall_0
,
precision_0
,
mcc_0
)
print
(
acc_1
,
recall_1
,
precision_1
,
mcc_1
)
print
(
acc_2
,
recall_2
,
precision_2
,
mcc_2
)
return
cm_0_1
,
cm_1_2
,
cm_0_2
,
[
acc_0
,
acc_1
,
acc_2
],
[
recall_0
,
recall_1
,
recall_2
],
\
[
precision_0
,
precision_1
,
precision_2
],
[
mcc_0
,
mcc_1
,
mcc_2
],
lbls
,
pred
if
__name__
==
"
__main__
"
:
nn
=
SRCNN
()
nn
.
run
(
'
matchup_filename
'
)
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment