Skip to content
Snippets Groups Projects
Commit 811850f0 authored by tomrink's avatar tomrink
Browse files

snapshot...

parent 78733d7d
No related branches found
No related tags found
No related merge requests found
...@@ -67,11 +67,19 @@ x_64 = np.arange(64) ...@@ -67,11 +67,19 @@ x_64 = np.arange(64)
y_64 = np.arange(64) y_64 = np.arange(64)
x_134_2 = x_134[3:131:2] x_134_2 = x_134[3:131:2]
y_134_2 = y_134[3:131:2] y_134_2 = y_134[3:131:2]
# x_134_2 = x_134[2:133:2]
# y_134_2 = y_134[2:133:2]
t = np.arange(0, 64, 0.5) t = np.arange(0, 64, 0.5)
s = np.arange(0, 64, 0.5) s = np.arange(0, 64, 0.5)
x_128_2 = x_134[3:131:2]
y_128_2 = y_134[3:131:2]
x_128 = x_134[3:131]
y_128 = y_134[3:131]
#----------- New
# x_134_2 = x_134[1:134:2]
# t = np.arange(1, 66, 0.5)
#--------------------------
def build_residual_conv2d_block(conv, num_filters, block_name, activation=tf.nn.relu, padding='SAME', def build_residual_conv2d_block(conv, num_filters, block_name, activation=tf.nn.relu, padding='SAME',
kernel_initializer='he_uniform', scale=None, kernel_initializer='he_uniform', scale=None,
...@@ -225,20 +233,19 @@ class SRCNN: ...@@ -225,20 +233,19 @@ class SRCNN:
data_norm = [] data_norm = []
for param in data_params: for param in data_params:
idx = params.index(param) idx = params.index(param)
tmp = input_data[:, idx, 3:131:2, 3:131:2] tmp = input_data[:, idx, y_128_2, x_128_2]
tmp = normalize(tmp, param, mean_std_dct, add_noise=add_noise, noise_scale=noise_scale) tmp = normalize(tmp, param, mean_std_dct, add_noise=add_noise, noise_scale=noise_scale)
tmp = resample_2d_linear(x_64, y_64, tmp, t, s) tmp = resample_2d_linear(x_64, y_64, tmp, t, s)
data_norm.append(tmp) data_norm.append(tmp)
# -------- # --------------------------
param = 'refl_0_65um_nom' param = 'refl_0_65um_nom'
idx = params.index(param) idx = params.index(param)
tmp = input_data[:, idx, 3:131:2, 3:131:2] tmp = input_data[:, idx, y_128_2, x_128_2]
# tmp = input_data[:, idx, 3:131, 3:131]
tmp = normalize(tmp, param, mean_std_dct, add_noise=add_noise, noise_scale=noise_scale) tmp = normalize(tmp, param, mean_std_dct, add_noise=add_noise, noise_scale=noise_scale)
tmp = resample_2d_linear(x_64, y_64, tmp, t, s) tmp = resample_2d_linear(x_64, y_64, tmp, t, s)
data_norm.append(tmp) data_norm.append(tmp)
# -------- # --------
tmp = input_data[:, label_idx, 3:131:2, 3:131:2] tmp = input_data[:, label_idx, y_128_2, x_128_2]
if label_param != 'cloud_fraction': if label_param != 'cloud_fraction':
tmp = normalize(tmp, label_param, mean_std_dct, add_noise=add_noise, noise_scale=noise_scale) tmp = normalize(tmp, label_param, mean_std_dct, add_noise=add_noise, noise_scale=noise_scale)
else: else:
...@@ -249,8 +256,8 @@ class SRCNN: ...@@ -249,8 +256,8 @@ class SRCNN:
data = np.stack(data_norm, axis=3) data = np.stack(data_norm, axis=3)
data = data.astype(np.float32) data = data.astype(np.float32)
# ----------------------------------------------------- # -----------------------------------------------------
# label = input_data[:, label_idx, 3:131:2, 3:131:2] # -----------------------------------------------------
label = input_data[:, label_idx, 3:131, 3:131] label = input_data[:, label_idx, y_128, x_128]
if label_param != 'cloud_fraction': if label_param != 'cloud_fraction':
label = normalize(label, label_param, mean_std_dct) label = normalize(label, label_param, mean_std_dct)
else: else:
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment