Skip to content
Snippets Groups Projects
Commit 80ef39b0 authored by tomrink's avatar tomrink
Browse files

snapshot

parent 59a04931
No related branches found
No related tags found
No related merge requests found
......@@ -6,7 +6,8 @@ import xarray as xr
from netCDF4 import Dataset, Dimension, Variable
from aeolus.geos_nav import GEOSNavigation
from util.util import haversine_np
from amv.intercompare import best_fit, bin_data_by, get_press_bin_ranges, spd_dir_from_uv, uv_from_spd_dir, direction_difference
from amv.intercompare import best_fit, bin_data_by, get_press_bin_ranges, spd_dir_from_uv, uv_from_spd_dir, \
direction_difference, run_best_fit_gfs2
import math
from metpy.units import units
......@@ -26,6 +27,8 @@ class AMVFiles:
def __init__(self, files_path, file_time_span, pattern, band='14'):
self.flist = glob.glob(files_path + pattern)
if len(self.flist) == 0:
raise MyGenericException('no matching files found in: ' + files_path)
self.band = band
self.ftimes = []
self.span_seconds = datetime.timedelta(minutes=file_time_span).seconds
......@@ -172,6 +175,30 @@ class CarrStereo(AMVFiles):
return self.meta_dict
def get_amvs(amv_files, timestamp, filepath=None):
if filepath is None:
filepath, ftime, f_idx = amv_files.get_file(timestamp)
# amv_params = amv_files.get_parameters()
amv_params = ['lon', 'lat', 'pressure', 'wind_speed', 'wind_direction']
ds = Dataset(filepath)
param_s = []
vld = None
for name in amv_params:
param = ds[name][:]
if vld is None:
vld = np.invert(param.mask)
else:
vld = np.logical_and(vld, np.invert(param.mask))
param_s.append(param.data)
param_nd = np.vstack(param_s)
param_nd = param_nd[:, vld]
param_nd = np.transpose(param_nd, axes=[1, 0])
return param_nd
# raob_dict: time -> profiles
# amv_files_path: directory containing AMVs, '/home/user/amvdir/'
# return dict: raob -> tuple (amv_lon, amv_lat, amv_pres, amv_spd, amv_dir)
......@@ -340,9 +367,17 @@ def create_file2(filename, raob_to_amv_dct, raob_dct, amv_files):
rootgrp.close()
def analyze2(raob_to_amv_dct, raob_dct):
def analyze2(raob_to_amv_dct, raob_dct, gfs_filename=None):
keys = list(raob_to_amv_dct.keys())
do_gfs_best_fit = False
if gfs_filename is not None:
do_gfs_best_fit = True
xr_dataset = xr.open_dataset(gfs_filename)
bf_gfs_list = []
gfs_press = xr_dataset['pressure levels']
gfs_press = gfs_press.values
amvs_list = []
bf_list = []
raob_match_list = []
......@@ -379,6 +414,9 @@ def analyze2(raob_to_amv_dct, raob_dct):
tup = (raob_spd[lev_idx], raob_dir[lev_idx], raob_prs[lev_idx], 0)
raob_match_list.append(tup)
if do_gfs_best_fit:
bf = run_best_fit_gfs2(xr_dataset, gfs_press, amv_lat, amv_lon, amv_prs, amv_spd, amv_dir)
bf_gfs_list.append(bf)
amvs = np.concatenate(amvs_list, axis=1)
amvs = np.transpose(amvs, axes=[1, 0])
......
......@@ -3,7 +3,8 @@ import xarray as xr
from util.setup import home_dir
from util.lon_lat_grid import earth_to_indexs
from util.util import haversine_np
from deeplearning.amv_raob import get_profile_multi
#from deeplearning.amv_raob import get_profile_multi
from util.gfs_reader import get_vert_profile_s
import cartopy
from cartopy import *
import metpy.calc as mpcalc
......@@ -575,14 +576,15 @@ def run_best_fit_gfs_all(amvs, gfs_filename):
return bfs_s
def run_best_fit_gfs(amvs, gfs_filename):
def run_best_fit_gfs(amvs, gfs_filename, amv_lat_idx=amv_lat_idx, amv_lon_idx=amv_lon_idx, amv_prs_idx=amv_prs_idx,
amv_spd_idx=amv_spd_idx, amv_dir_idx=amv_dir_idx):
xr_dataset = xr.open_dataset(gfs_filename)
num_amvs = amvs.shape[0]
bestfits = []
gfs_press = xr_dataset['pressure levels']
uv_wind = get_profile_multi(xr_dataset, ['u-wind', 'v-wind'], amvs[:, amv_lon_idx], amvs[:, amv_lat_idx])
uv_wind = get_vert_profile_s(xr_dataset, ['u-wind', 'v-wind'], amvs[:, amv_lon_idx], amvs[:, amv_lat_idx])
uv_wind = uv_wind.data
wspd, wdir = spd_dir_from_uv(uv_wind[0,:,:], uv_wind[1,:,:])
wspd = wspd.magnitude
......@@ -606,6 +608,21 @@ def run_best_fit_gfs(amvs, gfs_filename):
return bestfits
def run_best_fit_gfs2(xr_dataset, gfs_press, amv_lat, amv_lon, amv_prs, amv_spd, amv_dir):
uv_wind = get_vert_profile_s(xr_dataset, ['u-wind', 'v-wind'], np.array([amv_lon]), np.array([amv_lat]))
uv_wind = uv_wind.data
wspd, wdir = spd_dir_from_uv(uv_wind[0,:,:], uv_wind[1,:,:])
rspd = wspd.magnitude
rdir = wdir.magnitude
rspd = rspd.flatten()
rdir = rdir.flatten()
bf = best_fit(amv_spd, amv_dir, amv_prs, amv_lat, amv_lon, rspd, rdir, gfs_press)
bf = (bf[0], bf[1], bf[2], bf[3])
return bf
def raob_gfs_diff(raob_dct, gfs_filename):
r_press = 900.0
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment