Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
P
python
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Container registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
GitLab community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Tom Rink
python
Commits
6f6ac7e6
Commit
6f6ac7e6
authored
Jan 10, 2023
by
tomrink
Browse files
Options
Downloads
Patches
Plain Diff
snapshot...
parent
8c1d6f7a
No related branches found
No related tags found
No related merge requests found
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
modules/icing/pirep_goes.py
+21
-213
21 additions, 213 deletions
modules/icing/pirep_goes.py
with
21 additions
and
213 deletions
modules/icing/pirep_goes.py
+
21
−
213
View file @
6f6ac7e6
...
@@ -2422,138 +2422,6 @@ def tiles_info(filename):
...
@@ -2422,138 +2422,6 @@ def tiles_info(filename):
print
(
'
Icing 6:
'
,
np
.
sum
(
iint
==
6
))
print
(
'
Icing 6:
'
,
np
.
sum
(
iint
==
6
))
# def analyze(preds_file, labels, prob_avg, test_file):
#
# if preds_file is not None:
# labels, prob_avg, cm_avg = pickle.load(open(preds_file, 'rb'))
#
# h5f = h5py.File(test_file, 'r')
# nda = h5f['flight_altitude'][:]
# iint = h5f['icing_intensity'][:]
# cld_hgt = h5f['cld_height_acha'][:]
# cld_dz = h5f['cld_geo_thick'][:]
# cld_tmp = h5f['cld_temp_acha'][:]
#
# print('report altitude (m): ', np.histogram(nda, bins=12))
#
# iint = np.where(iint == -1, 0, iint)
# iint = np.where(iint != 0, 1, iint)
#
# nda[np.logical_and(nda >= 0, nda < 2000)] = 0
# nda[np.logical_and(nda >= 2000, nda < 4000)] = 1
# nda[np.logical_and(nda >= 4000, nda < 6000)] = 2
# nda[np.logical_and(nda >= 6000, nda < 8000)] = 3
# nda[np.logical_and(nda >= 8000, nda < 15000)] = 4
#
# print(np.sum(nda == 0), np.sum(nda == 1), np.sum(nda == 2), np.sum(nda == 3), np.sum(nda == 4))
# print('No icing: ', np.histogram(nda[iint == 0], bins=5)[0])
# print('---------------------------')
# print('Icing: ', np.histogram(nda[iint == 1], bins=5)[0])
# print('---------------------------')
#
# print('No Icing(Negative): mean cld_dz, cld_hgt')
# print('Icing(Positive): ", "')
# print('level 0: ')
# print(np.nanmean(cld_dz[(nda == 0) & (iint == 0)]), np.nanmean(cld_hgt[(nda == 0) & (iint == 0)]), np.nanmean(cld_tmp[(nda == 0) & (iint == 0)]))
# print(np.nanmean(cld_dz[(nda == 0) & (iint == 1)]), np.nanmean(cld_hgt[(nda == 0) & (iint == 1)]), np.nanmean(cld_tmp[(nda == 0) & (iint == 1)]))
# print('------------')
#
# print('level 1: ')
# print(np.nanmean(cld_dz[(nda == 1) & (iint == 0)]), np.nanmean(cld_hgt[(nda == 1) & (iint == 0)]), np.nanmean(cld_tmp[(nda == 1) & (iint == 0)]))
# print(np.nanmean(cld_dz[(nda == 1) & (iint == 1)]), np.nanmean(cld_hgt[(nda == 1) & (iint == 1)]), np.nanmean(cld_tmp[(nda == 1) & (iint == 1)]))
# print('------------')
#
# print('level 2: ')
# print(np.nanmean(cld_dz[(nda == 2) & (iint == 0)]), np.nanmean(cld_hgt[(nda == 2) & (iint == 0)]), np.nanmean(cld_tmp[(nda == 2) & (iint == 0)]))
# print(np.nanmean(cld_dz[(nda == 2) & (iint == 1)]), np.nanmean(cld_hgt[(nda == 2) & (iint == 1)]), np.nanmean(cld_tmp[(nda == 2) & (iint == 1)]))
# print('------------')
#
# print('level 3: ')
# print(np.nanmean(cld_dz[(nda == 3) & (iint == 0)]), np.nanmean(cld_hgt[(nda == 3) & (iint == 0)]), np.nanmean(cld_tmp[(nda == 3) & (iint == 0)]))
# print(np.nanmean(cld_dz[(nda == 3) & (iint == 1)]), np.nanmean(cld_hgt[(nda == 3) & (iint == 1)]), np.nanmean(cld_tmp[(nda == 3) & (iint == 1)]))
# print('------------')
#
# print('level 4: ')
# print(np.nanmean(cld_dz[(nda == 4) & (iint == 0)]), np.nanmean(cld_hgt[(nda == 4) & (iint == 0)]), np.nanmean(cld_tmp[(nda == 4) & (iint == 0)]))
# print(np.nanmean(cld_dz[(nda == 4) & (iint == 1)]), np.nanmean(cld_hgt[(nda == 4) & (iint == 1)]), np.nanmean(cld_tmp[(nda == 4) & (iint == 1)]))
# print('----------------------------------------------------------')
# print('----------------------------------------------------------')
#
# if prob_avg is None:
# return
#
# preds = np.where(prob_avg > 0.5, 1, 0)
#
# true_ice = (labels == 1) & (preds == 1)
# false_ice = (labels == 0) & (preds == 1)
#
# true_no_ice = (labels == 0) & (preds == 0)
# false_no_ice = (labels == 1) & (preds == 0)
#
# print('Total (Positive/Icing Prediction: ')
# print('True icing: ', np.histogram(nda[true_ice], bins=5)[0])
# print('-------------------------')
# print('False no icing (False Negative/Miss): ', np.histogram(nda[false_no_ice], bins=5)[0])
# print('By flight level:')
# print('No Icing(Negative): mean cld_dz, cld_hgt')
# print('Icing(Positive): ", "')
# print('level 0: ')
# print(np.nanmean(cld_dz[(nda == 0) & false_no_ice]), np.nanmean(cld_hgt[(nda == 0) & false_no_ice]), np.nanmean(cld_tmp[(nda == 0) & false_no_ice]))
# print(np.nanmean(cld_dz[(nda == 0) & true_ice]), np.nanmean(cld_hgt[(nda == 0) & true_ice]), np.nanmean(cld_tmp[(nda == 0) & true_ice]))
# print('------------')
#
# print('level 1: ')
# print(np.nanmean(cld_dz[(nda == 1) & false_no_ice]), np.nanmean(cld_hgt[(nda == 1) & false_no_ice]), np.nanmean(cld_tmp[(nda == 1) & false_no_ice]))
# print(np.nanmean(cld_dz[(nda == 1) & true_ice]), np.nanmean(cld_hgt[(nda == 1) & true_ice]), np.nanmean(cld_tmp[(nda == 1) & true_ice]))
# print('------------')
#
# print('level 2: ')
# print(np.nanmean(cld_dz[(nda == 2) & false_no_ice]), np.nanmean(cld_hgt[(nda == 2) & false_no_ice]), np.nanmean(cld_tmp[(nda == 2) & false_no_ice]))
# print(np.nanmean(cld_dz[(nda == 2) & true_ice]), np.nanmean(cld_hgt[(nda == 2) & true_ice]), np.nanmean(cld_tmp[(nda == 2) & true_ice]))
# print('------------')
#
# print('level 3: ')
# print(np.nanmean(cld_dz[(nda == 3) & false_no_ice]), np.nanmean(cld_hgt[(nda == 3) & false_no_ice]), np.nanmean(cld_tmp[(nda == 3) & false_no_ice]))
# print(np.nanmean(cld_dz[(nda == 3) & true_ice]), np.nanmean(cld_hgt[(nda == 3) & true_ice]), np.nanmean(cld_tmp[(nda == 3) & true_ice]))
# print('------------')
#
# print('level 4: ')
# print(np.nanmean(cld_dz[(nda == 4) & false_no_ice]), np.nanmean(cld_hgt[(nda == 4) & false_no_ice]), np.nanmean(cld_tmp[(nda == 4) & false_no_ice]))
# print(np.nanmean(cld_dz[(nda == 4) & true_ice]), np.nanmean(cld_hgt[(nda == 4) & true_ice]), np.nanmean(cld_tmp[(nda == 4) & true_ice]))
# print('---------------------------------------------------')
# print('---------------------------------------------------')
#
# print('Total (Negative/No Icing Prediction: ')
# print('True no icing: ', np.histogram(nda[true_no_ice], bins=5)[0])
# print('-------------------------')
# print('* False icing (False Positive/False Alarm) *: ', np.histogram(nda[false_ice], bins=5)[0])
# print('-------------------------')
#
# print('level 0: ')
# print(np.nanmean(cld_dz[(nda == 0) & false_ice]), np.nanmean(cld_hgt[(nda == 0) & false_ice]), np.nanmean(cld_tmp[(nda == 0) & false_ice]))
# print(np.nanmean(cld_dz[(nda == 0) & true_no_ice]), np.nanmean(cld_hgt[(nda == 0) & true_no_ice]), np.nanmean(cld_tmp[(nda == 0) & true_no_ice]))
# print('------------')
#
# print('level 1: ')
# print(np.nanmean(cld_dz[(nda == 1) & false_ice]), np.nanmean(cld_hgt[(nda == 1) & false_ice]), np.nanmean(cld_tmp[(nda == 1) & false_ice]))
# print(np.nanmean(cld_dz[(nda == 1) & true_no_ice]), np.nanmean(cld_hgt[(nda == 1) & true_no_ice]), np.nanmean(cld_tmp[(nda == 1) & true_no_ice]))
# print('------------')
#
# print('level 2: ')
# print(np.nanmean(cld_dz[(nda == 2) & false_ice]), np.nanmean(cld_hgt[(nda == 2) & false_ice]), np.nanmean(cld_tmp[(nda == 2) & false_ice]))
# print(np.nanmean(cld_dz[(nda == 2) & true_no_ice]), np.nanmean(cld_hgt[(nda == 2) & true_no_ice]), np.nanmean(cld_tmp[(nda == 2) & true_no_ice]))
# print('------------')
#
# print('level 3: ')
# print(np.nanmean(cld_dz[(nda == 3) & false_ice]), np.nanmean(cld_hgt[(nda == 3) & false_ice]), np.nanmean(cld_tmp[(nda == 3) & false_ice]))
# print(np.nanmean(cld_dz[(nda == 3) & true_no_ice]), np.nanmean(cld_hgt[(nda == 3) & true_no_ice]), np.nanmean(cld_tmp[(nda == 3) & true_no_ice]))
# print('------------')
#
# print('level 4: ')
# print(np.nanmean(cld_dz[(nda == 4) & false_ice]), np.nanmean(cld_hgt[(nda == 4) & false_ice]), np.nanmean(cld_tmp[(nda == 4) & false_ice]))
# print(np.nanmean(cld_dz[(nda == 4) & true_no_ice]), np.nanmean(cld_hgt[(nda == 4) & true_no_ice]), np.nanmean(cld_tmp[(nda == 4) & true_no_ice]))
#
def
analyze
(
preds_file
,
labels
,
prob_avg
,
test_file
):
def
analyze
(
preds_file
,
labels
,
prob_avg
,
test_file
):
if
preds_file
is
not
None
:
if
preds_file
is
not
None
:
...
@@ -2573,42 +2441,20 @@ def analyze(preds_file, labels, prob_avg, test_file):
...
@@ -2573,42 +2441,20 @@ def analyze(preds_file, labels, prob_avg, test_file):
iint
=
np
.
where
(
iint
==
-
1
,
0
,
iint
)
iint
=
np
.
where
(
iint
==
-
1
,
0
,
iint
)
iint
=
np
.
where
(
iint
!=
0
,
1
,
iint
)
iint
=
np
.
where
(
iint
!=
0
,
1
,
iint
)
# nda[np.logical_and(nda >= 0, nda < 2000)] = 0
nda
[
np
.
logical_and
(
nda
>=
300
,
nda
<
4000
)]
=
0
# nda[np.logical_and(nda >= 2000, nda < 4000)] = 1
nda
[
np
.
logical_and
(
nda
>=
4000
,
nda
<
7000
)]
=
1
# nda[np.logical_and(nda >= 4000, nda < 15000)] = 2
nda
[
np
.
logical_and
(
nda
>=
7000
,
nda
<
15000
)]
=
2
nda
[
np
.
logical_and
(
nda
>=
0
,
nda
<
3000
)]
=
0
nda
[
np
.
logical_and
(
nda
>=
3000
,
nda
<
6000
)]
=
1
# nda[np.logical_and(nda >= 5200, nda < 6000)] = 2
# nda[np.logical_and(nda >= 6000, nda < 8000)] = 3
# nda[np.logical_and(nda >= 6000, nda < 8000)] = 3
# nda[np.logical_and(nda >= 8000, nda < 15000)] = 4
# nda[np.logical_and(nda >= 8000, nda < 15000)] = 4
print
(
np
.
sum
(
nda
==
0
),
np
.
sum
(
nda
==
1
),
np
.
sum
(
nda
==
2
))
print
(
np
.
sum
(
nda
==
0
),
np
.
sum
(
nda
==
1
),
np
.
sum
(
nda
==
2
))
print
(
'
No icing:
'
,
np
.
sum
((
iint
==
0
)
&
(
nda
==
0
)),
np
.
sum
((
iint
==
0
)
&
(
nda
==
1
)))
print
(
'
No icing:
'
,
np
.
sum
((
iint
==
0
)
&
(
nda
==
0
)),
np
.
sum
((
iint
==
0
)
&
(
nda
==
1
))
,
np
.
sum
((
iint
==
0
)
&
(
nda
==
2
))
)
print
(
'
---------------------------
'
)
print
(
'
---------------------------
'
)
print
(
'
Icing:
'
,
np
.
sum
((
iint
==
1
)
&
(
nda
==
0
)),
np
.
sum
((
iint
==
1
)
&
(
nda
==
1
)))
print
(
'
Icing:
'
,
np
.
sum
((
iint
==
1
)
&
(
nda
==
0
)),
np
.
sum
((
iint
==
1
)
&
(
nda
==
1
))
,
np
.
sum
((
iint
==
1
)
&
(
nda
==
2
))
)
print
(
'
---------------------------
'
)
print
(
'
---------------------------
'
)
print
(
'
No Icing(Negative): mean cld_dz, cld_hgt
'
)
print
(
'
Icing(Positive):
"
,
"'
)
print
(
'
level 0:
'
)
print
(
np
.
nanmean
(
cld_dz
[(
nda
==
0
)
&
(
iint
==
0
)]),
np
.
nanmean
(
cld_hgt
[(
nda
==
0
)
&
(
iint
==
0
)]),
np
.
nanmean
(
cld_tmp
[(
nda
==
0
)
&
(
iint
==
0
)]))
print
(
np
.
nanmean
(
cld_dz
[(
nda
==
0
)
&
(
iint
==
1
)]),
np
.
nanmean
(
cld_hgt
[(
nda
==
0
)
&
(
iint
==
1
)]),
np
.
nanmean
(
cld_tmp
[(
nda
==
0
)
&
(
iint
==
1
)]))
print
(
'
------------
'
)
print
(
'
level 1:
'
)
print
(
np
.
nanmean
(
cld_dz
[(
nda
==
1
)
&
(
iint
==
0
)]),
np
.
nanmean
(
cld_hgt
[(
nda
==
1
)
&
(
iint
==
0
)]),
np
.
nanmean
(
cld_tmp
[(
nda
==
1
)
&
(
iint
==
0
)]))
print
(
np
.
nanmean
(
cld_dz
[(
nda
==
1
)
&
(
iint
==
1
)]),
np
.
nanmean
(
cld_hgt
[(
nda
==
1
)
&
(
iint
==
1
)]),
np
.
nanmean
(
cld_tmp
[(
nda
==
1
)
&
(
iint
==
1
)]))
print
(
'
------------
'
)
# print('level 2: ')
# print(np.nanmean(cld_dz[(nda == 2) & (iint == 0)]), np.nanmean(cld_hgt[(nda == 2) & (iint == 0)]), np.nanmean(cld_tmp[(nda == 2) & (iint == 0)]))
# print(np.nanmean(cld_dz[(nda == 2) & (iint == 1)]), np.nanmean(cld_hgt[(nda == 2) & (iint == 1)]), np.nanmean(cld_tmp[(nda == 2) & (iint == 1)]))
# print('------------')
print
(
'
----------------------------------------------------------
'
)
print
(
'
----------------------------------------------------------
'
)
print
(
'
----------------------------------------------------------
'
)
print
(
'
----------------------------------------------------------
'
)
# return flt_alt[iint == 0], flt_alt[iint == 1]
if
prob_avg
is
None
:
if
prob_avg
is
None
:
return
return
...
@@ -2621,91 +2467,53 @@ def analyze(preds_file, labels, prob_avg, test_file):
...
@@ -2621,91 +2467,53 @@ def analyze(preds_file, labels, prob_avg, test_file):
true_no_ice
=
(
labels
==
0
)
&
(
preds
==
0
)
true_no_ice
=
(
labels
==
0
)
&
(
preds
==
0
)
false_no_ice
=
(
labels
==
1
)
&
(
preds
==
0
)
false_no_ice
=
(
labels
==
1
)
&
(
preds
==
0
)
# tp = true_ice
# tn = true_no_ice
# fp = false_ice
# fn = false_no_ice
tp_0
=
np
.
sum
(
true_ice
&
(
nda
==
0
))
tp_0
=
np
.
sum
(
true_ice
&
(
nda
==
0
))
tp_1
=
np
.
sum
(
true_ice
&
(
nda
==
1
))
tp_1
=
np
.
sum
(
true_ice
&
(
nda
==
1
))
tp_2
=
np
.
sum
(
true_ice
&
(
nda
==
2
))
tn_0
=
np
.
sum
(
true_no_ice
&
(
nda
==
0
))
tn_0
=
np
.
sum
(
true_no_ice
&
(
nda
==
0
))
tn_1
=
np
.
sum
(
true_no_ice
&
(
nda
==
1
))
tn_1
=
np
.
sum
(
true_no_ice
&
(
nda
==
1
))
tn_2
=
np
.
sum
(
true_no_ice
&
(
nda
==
2
))
fp_0
=
np
.
sum
(
false_ice
&
(
nda
==
0
))
fp_0
=
np
.
sum
(
false_ice
&
(
nda
==
0
))
fp_1
=
np
.
sum
(
false_ice
&
(
nda
==
1
))
fp_1
=
np
.
sum
(
false_ice
&
(
nda
==
1
))
fp_2
=
np
.
sum
(
false_ice
&
(
nda
==
2
))
fn_0
=
np
.
sum
(
false_no_ice
&
(
nda
==
0
))
fn_0
=
np
.
sum
(
false_no_ice
&
(
nda
==
0
))
fn_1
=
np
.
sum
(
false_no_ice
&
(
nda
==
1
))
fn_1
=
np
.
sum
(
false_no_ice
&
(
nda
==
1
))
fn_2
=
np
.
sum
(
false_no_ice
&
(
nda
==
2
))
recall_0
=
tp_0
/
(
tp_0
+
fn_0
)
recall_0
=
tp_0
/
(
tp_0
+
fn_0
)
recall_1
=
tp_1
/
(
tp_1
+
fn_1
)
recall_1
=
tp_1
/
(
tp_1
+
fn_1
)
recall_2
=
tp_2
/
(
tp_2
+
fn_2
)
precision_0
=
tp_0
/
(
tp_0
+
fp_0
)
precision_0
=
tp_0
/
(
tp_0
+
fp_0
)
precision_1
=
tp_1
/
(
tp_1
+
fp_1
)
precision_1
=
tp_1
/
(
tp_1
+
fp_1
)
precision_2
=
tp_2
/
(
tp_2
+
fp_2
)
mcc_0
=
((
tp_0
*
tn_0
)
-
(
fp_0
*
fn_0
))
/
np
.
sqrt
((
tp_0
+
fp_0
)
*
(
tp_0
+
fn_0
)
*
(
tn_0
+
fp_0
)
*
(
tn_0
+
fn_0
))
mcc_0
=
((
tp_0
*
tn_0
)
-
(
fp_0
*
fn_0
))
/
np
.
sqrt
((
tp_0
+
fp_0
)
*
(
tp_0
+
fn_0
)
*
(
tn_0
+
fp_0
)
*
(
tn_0
+
fn_0
))
mcc_1
=
((
tp_1
*
tn_1
)
-
(
fp_1
*
fn_1
))
/
np
.
sqrt
((
tp_1
+
fp_1
)
*
(
tp_1
+
fn_1
)
*
(
tn_1
+
fp_1
)
*
(
tn_1
+
fn_1
))
mcc_1
=
((
tp_1
*
tn_1
)
-
(
fp_1
*
fn_1
))
/
np
.
sqrt
((
tp_1
+
fp_1
)
*
(
tp_1
+
fn_1
)
*
(
tn_1
+
fp_1
)
*
(
tn_1
+
fn_1
))
mcc_2
=
((
tp_2
*
tn_2
)
-
(
fp_2
*
fn_2
))
/
np
.
sqrt
((
tp_2
+
fp_2
)
*
(
tp_2
+
fn_2
)
*
(
tn_2
+
fp_2
)
*
(
tn_2
+
fn_2
))
# precision = true_ice / (true_ice + false_ice)
# recall = true_ice / (true_ice + false_no_ice)
# f1 = 2 * (precision * recall) / (precision + recall)
# tp = true_ice
# tn = true_no_ice
# fp = false_ice
# fn = false_no_ice
# mcc = ((tp * tn) - (fp * fn)) / np.sqrt((tp + fp) * (tp + fn) * (tn + fp) * (tn + fn))
print
(
'
Total (Positive/Icing Prediction:
'
)
print
(
'
Total (Positive/Icing Prediction:
'
)
print
(
'
True icing:
'
,
np
.
sum
(
true_ice
&
(
nda
==
0
)),
np
.
sum
(
true_ice
&
(
nda
==
1
)))
print
(
'
True icing:
'
,
np
.
sum
(
true_ice
&
(
nda
==
0
)),
np
.
sum
(
true_ice
&
(
nda
==
1
))
,
np
.
sum
(
true_ice
&
(
nda
==
2
))
)
print
(
'
-------------------------
'
)
print
(
'
-------------------------
'
)
print
(
'
False no icing (False Negative/Miss):
'
,
np
.
sum
(
false_no_ice
&
(
nda
==
0
)),
np
.
sum
(
false_no_ice
&
(
nda
==
1
)))
print
(
'
False no icing (False Negative/Miss):
'
,
np
.
sum
(
false_no_ice
&
(
nda
==
0
)),
np
.
sum
(
false_no_ice
&
(
nda
==
1
)),
np
.
sum
(
false_no_ice
&
(
nda
==
2
)))
# print('By flight level:')
# print('No Icing(Negative): mean cld_dz, cld_hgt')
# print('Icing(Positive): ", "')
# print('level 0: ')
# print(np.nanmean(cld_dz[(nda == 0) & false_no_ice]), np.nanmean(cld_hgt[(nda == 0) & false_no_ice]), np.nanmean(cld_tmp[(nda == 0) & false_no_ice]))
# print(np.nanmean(cld_dz[(nda == 0) & true_ice]), np.nanmean(cld_hgt[(nda == 0) & true_ice]), np.nanmean(cld_tmp[(nda == 0) & true_ice]))
# print('------------')
#
# print('level 1: ')
# print(np.nanmean(cld_dz[(nda == 1) & false_no_ice]), np.nanmean(cld_hgt[(nda == 1) & false_no_ice]), np.nanmean(cld_tmp[(nda == 1) & false_no_ice]))
# print(np.nanmean(cld_dz[(nda == 1) & true_ice]), np.nanmean(cld_hgt[(nda == 1) & true_ice]), np.nanmean(cld_tmp[(nda == 1) & true_ice]))
# print('------------')
#
# # print('level 2: ')
# # print(np.nanmean(cld_dz[(nda == 2) & false_no_ice]), np.nanmean(cld_hgt[(nda == 2) & false_no_ice]), np.nanmean(cld_tmp[(nda == 2) & false_no_ice]))
# # print(np.nanmean(cld_dz[(nda == 2) & true_ice]), np.nanmean(cld_hgt[(nda == 2) & true_ice]), np.nanmean(cld_tmp[(nda == 2) & true_ice]))
# # print('------------')
print
(
'
---------------------------------------------------
'
)
print
(
'
---------------------------------------------------
'
)
print
(
'
---------------------------------------------------
'
)
print
(
'
---------------------------------------------------
'
)
print
(
'
Total (Negative/No Icing Prediction:
'
)
print
(
'
Total (Negative/No Icing Prediction:
'
)
print
(
'
True no icing:
'
,
np
.
sum
(
true_no_ice
&
(
nda
==
0
)),
np
.
sum
(
true_no_ice
&
(
nda
==
1
)))
print
(
'
True no icing:
'
,
np
.
sum
(
true_no_ice
&
(
nda
==
0
)),
np
.
sum
(
true_no_ice
&
(
nda
==
1
))
,
np
.
sum
(
true_no_ice
&
(
nda
==
2
))
)
print
(
'
-------------------------
'
)
print
(
'
-------------------------
'
)
print
(
'
* False icing (False Positive/False Alarm) *:
'
,
np
.
sum
(
false_ice
&
(
nda
==
0
)),
np
.
sum
(
false_ice
&
(
nda
==
1
)))
print
(
'
* False icing (False Positive/False Alarm) *:
'
,
np
.
sum
(
false_ice
&
(
nda
==
0
)),
np
.
sum
(
false_ice
&
(
nda
==
1
))
,
np
.
sum
(
false_ice
&
(
nda
==
2
))
)
print
(
'
-------------------------
'
)
print
(
'
-------------------------
'
)
print
(
'
Recall:
'
,
recall_0
,
recall_1
)
print
(
'
Recall:
'
,
recall_0
,
recall_1
,
recall_2
)
print
(
'
Precision:
'
,
precision_0
,
precision_1
)
print
(
'
Precision:
'
,
precision_0
,
precision_1
,
precision_2
)
print
(
'
MCC:
'
,
mcc_0
,
mcc_1
)
print
(
'
MCC:
'
,
mcc_0
,
mcc_1
,
mcc_2
)
return
labels
[
nda
==
0
],
prob_avg
[
nda
==
0
],
labels
[
nda
==
1
],
prob_avg
[
nda
==
1
],
labels
[
nda
==
2
],
prob_avg
[
nda
==
2
]
# print('level 0: ')
# print(np.nanmean(cld_dz[(nda == 0) & false_ice]), np.nanmean(cld_hgt[(nda == 0) & false_ice]), np.nanmean(cld_tmp[(nda == 0) & false_ice]))
# print(np.nanmean(cld_dz[(nda == 0) & true_no_ice]), np.nanmean(cld_hgt[(nda == 0) & true_no_ice]), np.nanmean(cld_tmp[(nda == 0) & true_no_ice]))
# print('------------')
#
# print('level 1: ')
# print(np.nanmean(cld_dz[(nda == 1) & false_ice]), np.nanmean(cld_hgt[(nda == 1) & false_ice]), np.nanmean(cld_tmp[(nda == 1) & false_ice]))
# print(np.nanmean(cld_dz[(nda == 1) & true_no_ice]), np.nanmean(cld_hgt[(nda == 1) & true_no_ice]), np.nanmean(cld_tmp[(nda == 1) & true_no_ice]))
# print('------------')
#
# # print('level 2: ')
# # print(np.nanmean(cld_dz[(nda == 2) & false_ice]), np.nanmean(cld_hgt[(nda == 2) & false_ice]), np.nanmean(cld_tmp[(nda == 2) & false_ice]))
# # print(np.nanmean(cld_dz[(nda == 2) & true_no_ice]), np.nanmean(cld_hgt[(nda == 2) & true_no_ice]), np.nanmean(cld_tmp[(nda == 2) & true_no_ice]))
# # print('------------')
def
get_training_parameters
(
day_night
=
'
DAY
'
,
l1b_andor_l2
=
'
both
'
):
def
get_training_parameters
(
day_night
=
'
DAY
'
,
l1b_andor_l2
=
'
both
'
):
...
...
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
sign in
to comment