Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
P
python
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Container Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Tom Rink
python
Commits
6f04c860
Commit
6f04c860
authored
2 years ago
by
tomrink
Browse files
Options
Downloads
Patches
Plain Diff
initial commit...
parent
069f3aaf
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
modules/util/viirs_surfrad.py
+365
-0
365 additions, 0 deletions
modules/util/viirs_surfrad.py
with
365 additions
and
0 deletions
modules/util/viirs_surfrad.py
0 → 100644
+
365
−
0
View file @
6f04c860
import
numpy
as
np
import
h5py
from
util.util
import
get_grid_values
,
get_grid_values_all
,
is_night
,
is_day
,
compute_lwc_iwc
,
get_fill_attrs
import
glob
import
os
from
aeolus.datasource
import
CLAVRx_VIIRS
from
icing.moon_phase
import
*
from
pathlib
import
Path
# --- CLAVRx Radiometric parameters and metadata ------------------------------------------------
l1b_ds_list
=
[
'
temp_10_4um_nom
'
,
'
temp_11_0um_nom
'
,
'
temp_12_0um_nom
'
,
'
temp_13_3um_nom
'
,
'
temp_3_75um_nom
'
,
'
temp_6_2um_nom
'
,
'
temp_6_7um_nom
'
,
'
temp_7_3um_nom
'
,
'
temp_8_5um_nom
'
,
'
temp_9_7um_nom
'
,
'
refl_0_47um_nom
'
,
'
refl_0_65um_nom
'
,
'
refl_0_86um_nom
'
,
'
refl_1_38um_nom
'
,
'
refl_1_60um_nom
'
]
l1b_ds_types
=
{
ds
:
'
f4
'
for
ds
in
l1b_ds_list
}
l1b_ds_fill
=
{
l1b_ds_list
[
i
]:
-
32767
for
i
in
range
(
10
)}
l1b_ds_fill
.
update
({
l1b_ds_list
[
i
+
10
]:
-
32768
for
i
in
range
(
5
)})
l1b_ds_range
=
{
ds
:
'
actual_range
'
for
ds
in
l1b_ds_list
}
# --- CLAVRx L2 parameters and metadata
ds_list
=
[
'
cld_height_acha
'
,
'
cld_geo_thick
'
,
'
cld_press_acha
'
,
'
sensor_zenith_angle
'
,
'
supercooled_prob_acha
'
,
'
supercooled_cloud_fraction
'
,
'
cld_temp_acha
'
,
'
cld_opd_acha
'
,
'
solar_zenith_angle
'
,
'
cld_reff_acha
'
,
'
cld_reff_dcomp
'
,
'
cld_reff_dcomp_1
'
,
'
cld_reff_dcomp_2
'
,
'
cld_reff_dcomp_3
'
,
'
cld_opd_dcomp
'
,
'
cld_opd_dcomp_1
'
,
'
cld_opd_dcomp_2
'
,
'
cld_opd_dcomp_3
'
,
'
cld_cwp_dcomp
'
,
'
iwc_dcomp
'
,
'
lwc_dcomp
'
,
'
cld_emiss_acha
'
,
'
conv_cloud_fraction
'
,
'
cloud_type
'
,
'
cloud_phase
'
,
'
cloud_mask
'
]
ds_types
=
{
ds_list
[
i
]:
'
f4
'
for
i
in
range
(
23
)}
ds_types
.
update
({
ds_list
[
i
+
23
]:
'
i1
'
for
i
in
range
(
3
)})
ds_fill
=
{
ds_list
[
i
]:
-
32768
for
i
in
range
(
23
)}
ds_fill
.
update
({
ds_list
[
i
+
23
]:
-
128
for
i
in
range
(
3
)})
ds_range
=
{
ds_list
[
i
]:
'
actual_range
'
for
i
in
range
(
23
)}
ds_range
.
update
({
ds_list
[
i
]:
None
for
i
in
range
(
3
)})
ds_types
.
update
(
l1b_ds_types
)
ds_fill
.
update
(
l1b_ds_fill
)
ds_range
.
update
(
l1b_ds_range
)
ds_types
.
update
({
'
temp_3_9um_nom
'
:
'
f4
'
})
ds_types
.
update
({
'
cloud_fraction
'
:
'
f4
'
})
ds_fill
.
update
({
'
temp_3_9um_nom
'
:
-
32767
})
ds_fill
.
update
({
'
cloud_fraction
'
:
-
32768
})
ds_range
.
update
({
'
temp_3_9um_nom
'
:
'
actual_range
'
})
ds_range
.
update
({
'
cloud_fraction
'
:
'
actual_range
'
})
emis_params
=
[
'
temp_10_4um_nom
'
,
'
temp_11_0um_nom
'
,
'
temp_12_0um_nom
'
,
'
temp_13_3um_nom
'
,
'
temp_3_9um_nom
'
,
'
temp_6_7um_nom
'
]
# refl_params = ['refl_0_47um_nom', 'refl_0_65um_nom', 'refl_0_86um_nom', 'refl_1_38um_nom', 'refl_1_60um_nom']
# data_params = refl_params + emis_params
# data_params = emis_params
# target_param = 'cloud_probability'
target_param
=
'
cld_opd_dcomp
'
group_name_i
=
'
super/
'
group_name_m
=
'
orig/
'
solzen_name
=
group_name_m
+
'
solar_zenith
'
label_params
=
group_name_i
+
target_param
data_params
=
[
group_name_m
+
'
temp_11_0um
'
,
group_name_m
+
'
temp_12_0um
'
,
group_name_m
+
'
refl_0_65um
'
,
group_name_m
+
target_param
]
def
keep_tile
(
param_s
,
tile
):
k
=
param_s
.
index
(
group_name_m
+
target_param
)
grd_k
=
tile
[
k
,
].
copy
()
if
target_param
==
'
cloud_probability
'
:
grd_k
=
process_cld_prob_
(
grd_k
)
elif
target_param
==
'
cld_opd_dcomp
'
:
grd_k
=
process_cld_opd_
(
grd_k
)
if
grd_k
is
not
None
:
tile
[
k
,
]
=
grd_k
return
tile
else
:
return
None
def
process_cld_prob_
(
grd_k
):
keep
=
np
.
invert
(
np
.
isnan
(
grd_k
))
num_keep
=
np
.
sum
(
keep
)
if
num_keep
/
grd_k
.
size
<
0.98
:
return
None
keep
=
np
.
where
(
keep
,
np
.
logical_and
(
0.05
<
grd_k
,
grd_k
<
0.95
),
False
)
if
np
.
sum
(
keep
)
/
num_keep
<
0.50
:
return
None
grd_k
=
np
.
where
(
np
.
invert
(
keep
),
0
,
grd_k
)
return
grd_k
def
process_cld_opd_
(
grd_k
):
keep
=
np
.
invert
(
np
.
isnan
(
grd_k
))
num_keep
=
np
.
sum
(
keep
)
if
num_keep
/
grd_k
.
size
<
0.98
:
return
None
grd_k
=
np
.
where
(
np
.
invert
(
keep
),
0
,
grd_k
)
keep
=
np
.
where
(
keep
,
np
.
logical_and
(
0.1
<
grd_k
,
grd_k
<
158.0
),
False
)
if
np
.
sum
(
keep
)
/
num_keep
<
0.50
:
return
None
return
grd_k
def
run_all
(
directory
,
out_directory
,
day_night
=
'
ANY
'
,
start
=
10
):
cnt
=
start
total_num_train_samples
=
0
total_num_valid_samples
=
0
num_keep_x_tiles
=
8
pattern
=
'
clavrx_VNP02MOD*.highres.nc.level2.nc
'
pattern
=
'
clavrx_*.nc
'
path
=
directory
+
'
**
'
+
'
/
'
+
pattern
data_files
=
glob
.
glob
(
path
,
recursive
=
True
)
label_valid_tiles
=
[]
label_train_tiles
=
[]
data_valid_tiles
=
[]
data_train_tiles
=
[]
f_cnt
=
0
num_files
=
len
(
data_files
)
print
(
'
Start, number of files:
'
,
num_files
)
for
idx
,
data_f
in
enumerate
(
data_files
):
# if idx % 4 == 0: # if we want to skip some files
if
True
:
try
:
h5f
=
h5py
.
File
(
data_f
,
'
r
'
)
except
:
print
(
'
cant open file:
'
,
data_f
)
continue
try
:
run
(
h5f
,
data_params
,
data_train_tiles
,
data_valid_tiles
,
label_params
,
label_train_tiles
,
label_valid_tiles
,
num_keep_x_tiles
=
num_keep_x_tiles
,
tile_width
=
64
,
kernel_size
=
3
,
day_night
=
day_night
)
except
Exception
as
e
:
print
(
e
)
h5f
.
close
()
# label_h5f.close()
continue
print
(
data_f
)
f_cnt
+=
1
h5f
.
close
()
# label_h5f.close()
if
len
(
data_train_tiles
)
==
0
:
continue
if
(
f_cnt
%
5
)
==
0
:
num_valid_samples
=
0
if
len
(
data_valid_tiles
)
>
0
:
# label_valid = np.stack(label_valid_tiles)
data_valid
=
np
.
stack
(
data_valid_tiles
)
np
.
save
(
out_directory
+
'
data_valid_
'
+
str
(
cnt
),
data_valid
)
# np.save(out_directory+'label_valid_' + str(cnt), label_valid)
num_valid_samples
=
data_valid
.
shape
[
0
]
# label_train = np.stack(label_train_tiles)
# np.save(out_directory+'label_train_' + str(cnt), label_train)
data_train
=
np
.
stack
(
data_train_tiles
)
np
.
save
(
out_directory
+
'
data_train_
'
+
str
(
cnt
),
data_train
)
num_train_samples
=
data_train
.
shape
[
0
]
label_valid_tiles
=
[]
label_train_tiles
=
[]
data_valid_tiles
=
[]
data_train_tiles
=
[]
print
(
'
num_train_samples, num_valid_samples, progress % :
'
,
num_train_samples
,
num_valid_samples
,
int
((
f_cnt
/
num_files
)
*
100
))
total_num_train_samples
+=
num_train_samples
total_num_valid_samples
+=
num_valid_samples
print
(
'
total_num_train_samples, total_num_valid_samples:
'
,
total_num_train_samples
,
total_num_valid_samples
)
cnt
+=
1
print
(
'
** total_num_train_samples, total_num_valid_samples:
'
,
total_num_train_samples
,
total_num_valid_samples
)
# tile_width: Must be even!
# kernel_size: Must be odd!
def
run
(
h5f
,
param_s
,
train_tiles
,
valid_tiles
,
lbl_param_s
,
lbl_train_tiles
,
lbl_valid_tiles
,
num_keep_x_tiles
=
8
,
tile_width
=
64
,
kernel_size
=
3
,
day_night
=
'
DAY
'
):
border
=
int
((
kernel_size
-
1
)
/
2
)
+
1
param_name
=
param_s
[
0
]
num_lines
=
h5f
[
param_name
].
shape
[
0
]
num_pixels
=
h5f
[
param_name
].
shape
[
1
]
# Must be even
if
day_night
!=
'
BOTH
'
:
solzen
=
get_grid_values
(
h5f
,
solzen_name
,
0
,
0
,
None
,
num_lines
,
num_pixels
)
grd_s
=
[]
for
param
in
param_s
:
fill_value
,
fill_value_name
=
get_fill_attrs
(
param
)
try
:
grd
=
get_grid_values
(
h5f
,
param
,
0
,
0
,
None
,
num_lines
,
num_pixels
,
fill_value_name
=
fill_value_name
,
fill_value
=
fill_value
)
grd_s
.
append
(
grd
)
except
Exception
as
e
:
print
(
e
)
return
data
=
np
.
stack
(
grd_s
)
grd_s
=
[]
for
param
in
lbl_param_s
:
fill_value
,
fill_value_name
=
get_fill_attrs
(
param
)
try
:
grd
=
get_grid_values
(
h5f
,
param
,
0
,
0
,
None
,
num_lines
*
2
,
num_pixels
*
2
,
fill_value_name
=
fill_value_name
,
fill_value
=
fill_value
)
grd_s
.
append
(
grd
)
except
Exception
as
e
:
print
(
e
)
return
label
=
np
.
stack
(
grd_s
)
tile_width
+=
2
*
border
i_skip
=
tile_width
j_skip
=
tile_width
i_start
=
int
(
num_pixels
/
2
)
-
int
((
num_keep_x_tiles
*
tile_width
)
/
2
)
j_start
=
0
num_keep_y_tiles
=
int
(
num_lines
/
tile_width
)
-
3
num_y_valid
=
int
(
num_keep_y_tiles
*
0.1
)
+
1
num_y_train
=
num_keep_y_tiles
-
num_y_valid
-
1
for
j
in
range
(
num_y_train
):
j_a
=
j_start
+
j
*
j_skip
j_b
=
j_a
+
tile_width
for
i
in
range
(
num_keep_x_tiles
):
i_a
=
i_start
+
i
*
i_skip
i_b
=
i_a
+
tile_width
if
day_night
==
'
DAY
'
and
not
is_day
(
solzen
[
j_a
:
j_b
,
i_a
:
i_b
]):
continue
elif
day_night
==
'
NIGHT
'
and
is_day
(
solzen
[
j_a
:
j_b
,
i_a
:
i_b
]):
continue
nda
=
data
[:,
j_a
:
j_b
,
i_a
:
i_b
]
nda_lbl
=
label
[:,
j_a
*
2
:
j_b
*
2
,
i_a
*
2
:
i_b
*
2
]
nda
=
keep_tile
(
param_s
,
nda
)
if
nda
is
not
None
:
train_tiles
.
append
(
nda
)
lbl_train_tiles
.
append
(
nda_lbl
)
j_start
=
num_y_train
*
tile_width
+
2
*
tile_width
for
j
in
range
(
num_y_valid
):
j_a
=
j_start
+
j
*
j_skip
j_b
=
j_a
+
tile_width
for
i
in
range
(
num_keep_x_tiles
):
i_a
=
i_start
+
i
*
i_skip
i_b
=
i_a
+
tile_width
if
day_night
==
'
DAY
'
and
not
is_day
(
solzen
[
j_a
:
j_b
,
i_a
:
i_b
]):
continue
elif
day_night
==
'
NIGHT
'
and
is_day
(
solzen
[
j_a
:
j_b
,
i_a
:
i_b
]):
continue
nda
=
data
[:,
j_a
:
j_b
,
i_a
:
i_b
]
nda_lbl
=
label
[:,
j_a
*
2
:
j_b
*
2
,
i_a
*
2
:
i_b
*
2
]
nda
=
keep_tile
(
param_s
,
nda
)
if
nda
is
not
None
:
valid_tiles
.
append
(
nda
)
lbl_valid_tiles
.
append
(
nda_lbl
)
def
scan
(
directory
):
data_src
=
CLAVRx_VIIRS
(
directory
)
files
=
data_src
.
flist
for
idx
,
file
in
enumerate
(
files
):
h5f
=
h5py
.
File
(
file
,
'
r
'
)
ts
=
data_src
.
ftimes
[
idx
][
0
]
try
:
solzen
=
get_grid_values_all
(
h5f
,
'
solar_zenith_angle
'
)
except
Exception
as
e
:
# print(e)
h5f
.
close
()
continue
# if is_day(solzen) and moon_phase(ts):
if
is_night
(
solzen
)
and
moon_phase
(
ts
):
print
(
file
)
h5f
.
close
()
def
scan_for_location
(
txt_file
,
lon_range
=
[
111.0
,
130.0
],
lat_range
=
[
14.0
,
32.0
]):
with
open
(
txt_file
)
as
file
:
for
idx
,
fpath
in
enumerate
(
file
):
fpath
=
fpath
.
strip
()
h5f
=
h5py
.
File
(
fpath
,
'
r
'
)
try
:
lon_s
=
get_grid_values_all
(
h5f
,
'
longitude
'
,
stride
=
4
)
lat_s
=
get_grid_values_all
(
h5f
,
'
latitude
'
,
stride
=
4
)
c_lon
,
c_lat
=
lon_s
[
406
,
400
],
lat_s
[
406
,
400
]
if
(
lon_range
[
0
]
<
c_lon
<
lon_range
[
1
])
and
(
lat_range
[
0
]
<
c_lat
<
lat_range
[
1
]):
print
(
fpath
)
except
Exception
as
e
:
# print(e)
h5f
.
close
()
continue
def
test_nlcomp
(
file
):
h5f
=
h5py
.
File
(
file
,
'
r
'
)
cld_phs
=
get_grid_values_all
(
h5f
,
'
cloud_phase
'
,
scale_factor_name
=
None
,
range_name
=
None
)
keep_0
=
np
.
invert
(
np
.
isnan
(
cld_phs
))
reff
=
get_grid_values_all
(
h5f
,
'
cld_reff_nlcomp
'
)
keep_1
=
np
.
invert
(
np
.
isnan
(
reff
))
opd
=
get_grid_values_all
(
h5f
,
'
cld_opd_nlcomp
'
)
keep_2
=
np
.
invert
(
np
.
isnan
(
opd
))
cld_dz
=
get_grid_values_all
(
h5f
,
'
cld_geo_thick
'
)
keep_3
=
np
.
logical_and
(
np
.
invert
(
np
.
isnan
(
cld_dz
)),
cld_dz
>
5.0
)
keep
=
keep_0
&
keep_1
&
keep_2
&
keep_3
cld_phs
=
cld_phs
[
keep
]
reff
=
reff
[
keep
]
opd
=
opd
[
keep
]
cld_dz
=
cld_dz
[
keep
]
lwc_c
,
iwc_c
=
compute_lwc_iwc
(
cld_phs
,
reff
,
opd
,
cld_dz
)
return
lwc_c
,
iwc_c
# def run_mean_std(directory):
#
# data_dct = {name: [] for name in mod_res_params}
# mean_dct = {name: 0 for name in mod_res_params}
# std_dct = {name: 0 for name in mod_res_params}
#
# for p in os.scandir(directory):
# if not p.is_dir():
# continue
# mod_files = glob.glob(directory+p.name+'/'+'VNP02MOD*.uwssec.nc')
#
# for idx, mfile in enumerate(mod_files):
# if idx % 8 == 0:
# h5f = h5py.File(mfile, 'r')
# for param in mod_res_params:
# name = 'observation_data/'+param
# gvals = get_grid_values_all(h5f, name, range_name=None, stride=10)
# data_dct[param].append(gvals.flatten())
# print(mfile)
# h5f.close()
#
# for param in mod_res_params:
# data = data_dct[param]
# data = np.concatenate(data)
#
# mean_dct[param] = np.nanmean(data)
# std_dct[param] = np.nanstd(data)
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment