Skip to content
Snippets Groups Projects
Commit 6485efa9 authored by tomrink's avatar tomrink
Browse files

snapshot...

parent a92bca6f
No related branches found
No related tags found
No related merge requests found
...@@ -210,9 +210,9 @@ class ESPCN: ...@@ -210,9 +210,9 @@ class ESPCN:
self.n_chans = 1 self.n_chans = 1
self.X_img = tf.keras.Input(shape=(None, None, self.n_chans)) # self.X_img = tf.keras.Input(shape=(None, None, self.n_chans))
# self.X_img = tf.keras.Input(shape=(36, 36, self.n_chans)) # self.X_img = tf.keras.Input(shape=(36, 36, self.n_chans))
# self.X_img = tf.keras.Input(shape=(32, 32, self.n_chans)) self.X_img = tf.keras.Input(shape=(32, 32, self.n_chans))
self.inputs.append(self.X_img) self.inputs.append(self.X_img)
...@@ -414,20 +414,25 @@ class ESPCN: ...@@ -414,20 +414,25 @@ class ESPCN:
conv = tf.keras.layers.BatchNormalization()(conv) conv = tf.keras.layers.BatchNormalization()(conv)
print(conv.shape) print(conv.shape)
conv = tf.keras.layers.Conv2D(4, kernel_size=3, strides=1, padding=padding, activation=activation)(conv) # conv = tf.keras.layers.Conv2D(4, kernel_size=3, strides=1, padding=padding, activation=activation)(conv)
print(conv.shape) # print(conv.shape)
conv = tf.nn.depth_to_space(conv, block_size=2) conv = tf.keras.layers.Conv2DTranspose(4, kernel_size=3, strides=2, padding=padding, activation=activation)(conv)
conv = tf.keras.layers.Activation(activation=activation)(conv)
print(conv.shape) print(conv.shape)
if NumClasses == 2: self.logits = tf.keras.layers.Conv2D(1, kernel_size=1, strides=1, padding=padding, name='probability', activation=tf.nn.sigmoid)(conv)
activation = tf.nn.sigmoid # For binary
else:
activation = tf.nn.softmax # For multi-class
# Called logits, but these are actually probabilities, see activation # conv = tf.nn.depth_to_space(conv, block_size=2)
self.logits = tf.keras.layers.Activation(activation=activation)(conv) # conv = tf.keras.layers.Activation(activation=activation)(conv)
# print(conv.shape)
#
# if NumClasses == 2:
# activation = tf.nn.sigmoid # For binary
# else:
# activation = tf.nn.softmax # For multi-class
#
# # Called logits, but these are actually probabilities, see activation
# self.logits = tf.keras.layers.Activation(activation=activation)(conv)
print(self.logits.shape) print(self.logits.shape)
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment