Skip to content
Snippets Groups Projects
Commit 6349581b authored by tomrink's avatar tomrink
Browse files

snapshot...

parent afcfd037
No related branches found
No related tags found
No related merge requests found
...@@ -741,20 +741,20 @@ def run_evaluate_static(in_file, out_file, ckpt_dir): ...@@ -741,20 +741,20 @@ def run_evaluate_static(in_file, out_file, ckpt_dir):
# refl_hi = np.squeeze(refl_hi) # refl_hi = np.squeeze(refl_hi)
# refl_avg = np.squeeze(refl_avg) # refl_avg = np.squeeze(refl_avg)
cld_opd = np.where(np.isnan(cld_opd), 0, cld_opd) # cld_opd = np.where(np.isnan(cld_opd), 0, cld_opd)
cld_opd = cld_opd[nn.slc_y_2, nn.slc_x_2] # cld_opd = cld_opd[nn.slc_y_2, nn.slc_x_2]
cld_opd = np.expand_dims(cld_opd, axis=0)
cld_opd = nn.upsample(cld_opd)
cld_opd = smooth_2d(cld_opd)
cld_opd = normalize(cld_opd, label_param, mean_std_dct)
# cld_opd = np.where(np.isnan(cld_opd_orig), 0, cld_opd_orig)
# cld_opd = cld_opd[nn.slc_y_m, nn.slc_x_m]
# cld_opd = np.expand_dims(cld_opd, axis=0) # cld_opd = np.expand_dims(cld_opd, axis=0)
# cld_opd = nn.upsample(cld_opd) # cld_opd = nn.upsample(cld_opd)
# cld_opd = smooth_2d(cld_opd) # cld_opd = smooth_2d(cld_opd)
# cld_opd = normalize(cld_opd, label_param, mean_std_dct) # cld_opd = normalize(cld_opd, label_param, mean_std_dct)
cld_opd = np.where(np.isnan(cld_opd_orig), 0, cld_opd_orig)
cld_opd = cld_opd[nn.slc_y_m, nn.slc_x_m]
cld_opd = np.expand_dims(cld_opd, axis=0)
cld_opd = nn.upsample(cld_opd)
cld_opd = smooth_2d(cld_opd)
cld_opd = normalize(cld_opd, label_param, mean_std_dct)
data = np.stack([bt, refl, cld_opd], axis=3) data = np.stack([bt, refl, cld_opd], axis=3)
print('input data shape: ', data.shape) print('input data shape: ', data.shape)
...@@ -765,19 +765,19 @@ def run_evaluate_static(in_file, out_file, ckpt_dir): ...@@ -765,19 +765,19 @@ def run_evaluate_static(in_file, out_file, ckpt_dir):
# cld_opd_sres = descale(cld_opd_sres, label_param, mean_std_dct) # cld_opd_sres = descale(cld_opd_sres, label_param, mean_std_dct)
_, ylen, xlen, _ = cld_opd_sres.shape _, ylen, xlen, _ = cld_opd_sres.shape
# cld_opd_sres_out = np.zeros((LEN_Y, LEN_X), dtype=np.float32) cld_opd_sres_out = np.zeros((LEN_Y, LEN_X), dtype=np.float32)
# refl_out = np.zeros((LEN_Y, LEN_X), dtype=np.float32) refl_out = np.zeros((LEN_Y, LEN_X), dtype=np.float32)
# cld_opd_out = np.zeros((LEN_Y, LEN_X), dtype=np.float32) cld_opd_out = np.zeros((LEN_Y, LEN_X), dtype=np.float32)
#
# cld_opd_sres_out[border:(border+ylen), border:(border+xlen)] = cld_opd_sres[0, :, :, 0] cld_opd_sres_out[border:(border+ylen), border:(border+xlen)] = cld_opd_sres[0, :, :, 0]
# refl_out[0:(ylen+2*border), 0:(xlen+2*border)] = refl[0, :, :] refl_out[0:(ylen+2*border), 0:(xlen+2*border)] = refl[0, :, :]
# cld_opd_out[0:(ylen+2*border), 0:(xlen+2*border)] = cld_opd[0, :, :] cld_opd_out[0:(ylen+2*border), 0:(xlen+2*border)] = cld_opd[0, :, :]
cld_opd_sres_out = cld_opd_sres[0, :, :, 0] # cld_opd_sres_out = cld_opd_sres[0, :, :, 0]
refl_out = refl[0, :, :] # refl_out = refl[0, :, :]
cld_opd_out = cld_opd[0, :, :] # cld_opd_out = cld_opd[0, :, :]
cld_opd_hres = cld_opd_hres # cld_opd_hres = cld_opd_hres
print(cld_opd_sres_out.shape, refl_out.shape, cld_opd_out.shape, cld_opd_hres.shape) # print(cld_opd_sres_out.shape, refl_out.shape, cld_opd_out.shape, cld_opd_hres.shape)
refl_out = denormalize(refl_out, 'refl_0_65um_nom', mean_std_dct) refl_out = denormalize(refl_out, 'refl_0_65um_nom', mean_std_dct)
cld_opd_out = denormalize(cld_opd_out, label_param, mean_std_dct) cld_opd_out = denormalize(cld_opd_out, label_param, mean_std_dct)
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment