Skip to content
Snippets Groups Projects
Commit 61038eee authored by tomrink's avatar tomrink
Browse files

snapshot...

parent aacaf4e5
Branches
No related tags found
No related merge requests found
......@@ -10,13 +10,13 @@ from sklearn.linear_model import LogisticRegression
from sklearn.neighbors import KNeighborsClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier, GradientBoostingRegressor
import itertools
import itertools, joblib
import sklearn.tree as tree
from sklearn.tree import export_graphviz
# The independent variables (features) we want to use:
params = ['cld_temp_acha', 'supercooled_cloud_fraction', 'cld_reff_dcomp', 'cld_opd_dcomp', 'cld_cwp_dcomp']
# params = ['cld_temp_acha', 'supercooled_cloud_fraction', 'cld_reff_dcomp', 'cld_opd_dcomp']
# params = ['cld_temp_acha', 'supercooled_cloud_fraction', 'cld_reff_dcomp', 'cld_opd_dcomp', 'cld_cwp_dcomp']
params = ['cld_temp_acha', 'supercooled_cloud_fraction', 'cld_reff_dcomp', 'cld_opd_dcomp']
def metrics(y_true, y_pred, y_pred_prob=None):
......@@ -93,8 +93,11 @@ def get_feature_target_data(csv_file, reduce_frac=1.0, random_state=42, standard
x = np.asarray(icing_df[params])
if standardize:
x = preprocessing.StandardScaler().fit(x).transform(x)
stdSclr = preprocessing.StandardScaler()
stdSclr.fit(x)
x = stdSclr.transform(x)
x = np.where(np.isnan(x), 0, x)
joblib.dump(stdSclr, '/Users/tomrink/stdSclr_4.pkl')
# The dependent variable (target) --------------------------------------------
y = np.asarray(icing_df['icing_intensity'])
......@@ -231,7 +234,7 @@ def random_forest(x_train, y_train, x_test, y_test, criterion='entropy', max_dep
metrics(y_test, yhat, y_pred_prob=yhat_prob)
def gradient_boosting(x_train, y_train, x_test, y_test, n_estimators=100, max_depth=3, learning_rate=0.1):
def gradient_boosting(x_train, y_train, x_test, y_test, n_estimators=100, max_depth=3, learning_rate=0.1, saveModel=True):
gbm = GradientBoostingClassifier(n_estimators=100, learning_rate=0.1, max_depth=3)
gbm.fit(x_train, y_train)
......@@ -239,3 +242,6 @@ def gradient_boosting(x_train, y_train, x_test, y_test, n_estimators=100, max_de
yhat_prob = gbm.predict_proba(x_test)
metrics(y_test, yhat, y_pred_prob=yhat_prob)
if saveModel:
joblib.dump(gbm, '/Users/tomrink/icing_gbm.pkl')
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please to comment