Skip to content
Snippets Groups Projects
Commit 5e9c47dc authored by tomrink's avatar tomrink
Browse files

snapshot...

parent 791a4c44
Branches
No related tags found
No related merge requests found
......@@ -138,45 +138,43 @@ def upsample(tmp):
return tmp
def upsample_nearest(tmp):
bsize = tmp.shape[0]
tmp_2 = tmp[:, slc_y_2, slc_x_2]
up = np.zeros(bsize, t.size, s.size)
for k in range(bsize):
for j in range(t.size/2):
for i in range(s.size/2):
up[k, j, i] = tmp_2[k, j, i]
up[k, j, i+1] = tmp_2[k, j, i]
up[k, j+1, i] = tmp_2[k, j, i]
up[k, j+1, i+1] = tmp_2[k, j, i]
return up
# def get_label_data(grd_k):
# grd_k = np.where(np.isnan(grd_k), 0, grd_k)
# grd_k = np.where(grd_k < 0.5, 0, 1)
#
# a = grd_k[:, 0::2, 0::2]
# b = grd_k[:, 1::2, 0::2]
# c = grd_k[:, 0::2, 1::2]
# d = grd_k[:, 1::2, 1::2]
# s_t = a + b + c + d
# s_t = np.where(s_t == 0, 0, s_t)
# s_t = np.where(s_t == 1, 1, s_t)
# s_t = np.where(s_t == 2, 1, s_t)
# s_t = np.where(s_t == 3, 1, s_t)
# s_t = np.where(s_t == 4, 2, s_t)
#
# return s_t
def get_label_data(grd_k):
def get_grid_cell_mean(grd_k):
grd_k = np.where(np.isnan(grd_k), 0, grd_k)
grd_k = np.where(grd_k < 0.5, 0, 1)
a = grd_k[:, 0::2, 0::2]
b = grd_k[:, 1::2, 0::2]
c = grd_k[:, 0::2, 1::2]
d = grd_k[:, 1::2, 1::2]
s_t = a + b + c + d
s_t = np.where(s_t == 0, 0, s_t)
s_t = np.where(s_t == 1, 1, s_t)
s_t = np.where(s_t == 2, 1, s_t)
s_t = np.where(s_t == 3, 1, s_t)
s_t = np.where(s_t == 4, 2, s_t)
s = a + b + c + d
s /= 4.0
return s_t
return s
# def get_label_data(grd_k):
# grd_k = np.where(np.isnan(grd_k), 0, grd_k)
# grd_k = np.where((grd_k >= 0.0) & (grd_k < 0.3), 0, grd_k)
# grd_k = np.where((grd_k >= 0.3) & (grd_k < 0.7), 1, grd_k)
# grd_k = np.where((grd_k >= 0.7) & (grd_k <= 1.0), 2, grd_k)
#
# return grd_k
def get_label_data(grd_k):
grd_k = np.where(np.isnan(grd_k), 0, grd_k)
grd_k = np.where((grd_k >= 0.0) & (grd_k < 0.3), 0, grd_k)
grd_k = np.where((grd_k >= 0.3) & (grd_k < 0.7), 1, grd_k)
grd_k = np.where((grd_k >= 0.7) & (grd_k <= 1.0), 2, grd_k)
return grd_k
class SRCNN:
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment