Skip to content
Snippets Groups Projects
Commit 5de81752 authored by tomrink's avatar tomrink
Browse files

snapshot...

parent c3ab6716
No related branches found
No related tags found
No related merge requests found
...@@ -249,7 +249,6 @@ class SRCNN: ...@@ -249,7 +249,6 @@ class SRCNN:
data_norm = [] data_norm = []
for param in data_params: for param in data_params:
idx = params.index(param) idx = params.index(param)
# tmp = input_data[:, idx, y_128_2, x_128_2]
tmp = input_data[:, idx, slc_y_2, slc_x_2] tmp = input_data[:, idx, slc_y_2, slc_x_2]
tmp = normalize(tmp, param, mean_std_dct, add_noise=add_noise, noise_scale=noise_scale) tmp = normalize(tmp, param, mean_std_dct, add_noise=add_noise, noise_scale=noise_scale)
tmp = resample_2d_linear(x_64, y_64, tmp, t, s) tmp = resample_2d_linear(x_64, y_64, tmp, t, s)
...@@ -257,13 +256,11 @@ class SRCNN: ...@@ -257,13 +256,11 @@ class SRCNN:
# -------------------------- # --------------------------
param = 'refl_0_65um_nom' param = 'refl_0_65um_nom'
idx = params.index(param) idx = params.index(param)
# tmp = input_data[:, idx, y_128_2, x_128_2]
tmp = input_data[:, idx, slc_y_2, slc_x_2] tmp = input_data[:, idx, slc_y_2, slc_x_2]
tmp = normalize(tmp, param, mean_std_dct, add_noise=add_noise, noise_scale=noise_scale) tmp = normalize(tmp, param, mean_std_dct, add_noise=add_noise, noise_scale=noise_scale)
tmp = resample_2d_linear(x_64, y_64, tmp, t, s) tmp = resample_2d_linear(x_64, y_64, tmp, t, s)
data_norm.append(tmp) data_norm.append(tmp)
# -------- # --------
# tmp = input_data[:, label_idx, y_128_2, x_128_2]
tmp = input_data[:, label_idx, slc_y_2, slc_x_2] tmp = input_data[:, label_idx, slc_y_2, slc_x_2]
if label_param != 'cloud_fraction': if label_param != 'cloud_fraction':
tmp = normalize(tmp, label_param, mean_std_dct, add_noise=add_noise, noise_scale=noise_scale) tmp = normalize(tmp, label_param, mean_std_dct, add_noise=add_noise, noise_scale=noise_scale)
...@@ -276,7 +273,6 @@ class SRCNN: ...@@ -276,7 +273,6 @@ class SRCNN:
data = data.astype(np.float32) data = data.astype(np.float32)
# ----------------------------------------------------- # -----------------------------------------------------
# ----------------------------------------------------- # -----------------------------------------------------
# label = input_data[:, label_idx, y_128, x_128]
label = input_data[:, label_idx, slc_y, slc_x] label = input_data[:, label_idx, slc_y, slc_x]
if label_param != 'cloud_fraction': if label_param != 'cloud_fraction':
label = normalize(label, label_param, mean_std_dct) label = normalize(label, label_param, mean_std_dct)
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment