Skip to content
Snippets Groups Projects
Commit 57daf95a authored by tomrink's avatar tomrink
Browse files

snapshot...

parent 97c48b52
No related branches found
No related tags found
No related merge requests found
...@@ -201,29 +201,54 @@ def get_grid_cell_mean(grd_k): ...@@ -201,29 +201,54 @@ def get_grid_cell_mean(grd_k):
return s return s
# def get_label_data(grd_k):
# grd_k = np.where(np.isnan(grd_k), 0, grd_k)
#
# a = grd_k[:, 0::2, 0::2]
# b = grd_k[:, 1::2, 0::2]
# c = grd_k[:, 0::2, 1::2]
# d = grd_k[:, 1::2, 1::2]
# s_t = a + b + c + d
# s_t /= 4.0
#
# blen, ylen, xlen = s_t.shape
# s_t = s_t.flatten()
# cat_0 = np.logical_and(s_t >= 0.0, s_t < 0.2)
# cat_1 = np.logical_and(s_t >= 0.2, s_t < 0.7)
# cat_2 = np.logical_and(s_t >= 0.7, s_t <= 1.0)
#
# s_t[cat_0] = 0
# s_t[cat_1] = 1
# s_t[cat_2] = 2
#
# s_t = s_t.reshape((blen, ylen, xlen))
#
# return s_t
def get_label_data(grd_k): def get_label_data(grd_k):
grd_k = np.where(np.isnan(grd_k), 0, grd_k) grd_k = np.where(np.isnan(grd_k), 0, grd_k)
cat_0 = np.logical_and(grd_k >= 0.0, grd_k < 0.2)
cat_1 = np.logical_and(grd_k >= 0.2, grd_k < 0.7)
cat_2 = np.logical_and(grd_k >= 0.7, grd_k <= 1.0)
grd_k[cat_0] = -1
grd_k[cat_1] = 0
grd_k[cat_2] = 1
a = grd_k[:, 0::2, 0::2] a = grd_k[:, 0::2, 0::2]
b = grd_k[:, 1::2, 0::2] b = grd_k[:, 1::2, 0::2]
c = grd_k[:, 0::2, 1::2] c = grd_k[:, 0::2, 1::2]
d = grd_k[:, 1::2, 1::2] d = grd_k[:, 1::2, 1::2]
s_t = a + b + c + d s = a + b + c + d
s_t /= 4.0
blen, ylen, xlen = s_t.shape
s_t = s_t.flatten()
cat_0 = np.logical_and(s_t >= 0.0, s_t < 0.2)
cat_1 = np.logical_and(s_t >= 0.2, s_t < 0.7)
cat_2 = np.logical_and(s_t >= 0.7, s_t <= 1.0)
s_t[cat_0] = 0
s_t[cat_1] = 1
s_t[cat_2] = 2
s_t = s_t.reshape((blen, ylen, xlen)) cat_0 = s <= -3
cat_1 = np.logical_and(s > -3, s < 3)
cat_2 = s >= 3
s[cat_0] = 0
s[cat_1] = 1
s[cat_2] = 2
return s_t return s
class SRCNN: class SRCNN:
...@@ -384,9 +409,9 @@ class SRCNN: ...@@ -384,9 +409,9 @@ class SRCNN:
if DO_ESPCN: if DO_ESPCN:
tmp = tmp[:, slc_y_2, slc_x_2] tmp = tmp[:, slc_y_2, slc_x_2]
else: # Half res upsampled to full res: else: # Half res upsampled to full res:
tmp = upsample(tmp) # tmp = upsample(tmp)
# tmp = upsample_mean(tmp) tmp = upsample_mean(tmp)
# tmp = tmp[:, slc_y, slc_x] tmp = tmp[:, slc_y, slc_x]
if label_param != 'cloud_probability': if label_param != 'cloud_probability':
tmp = normalize(tmp, label_param, mean_std_dct) tmp = normalize(tmp, label_param, mean_std_dct)
if DO_ADD_NOISE: if DO_ADD_NOISE:
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment