Skip to content
Snippets Groups Projects
Commit 5708ab26 authored by tomrink's avatar tomrink
Browse files

snapshot...

parent 81ec8d33
No related branches found
No related tags found
No related merge requests found
...@@ -141,10 +141,10 @@ def get_min_max_std(grd_k): ...@@ -141,10 +141,10 @@ def get_min_max_std(grd_k):
return lo, hi, std, avg return lo, hi, std, avg
# def upsample_static(grd, x_2, y_2, t, s, y_k, x_k): def upsample_static(grd, x_2, y_2, t, s, y_k, x_k):
# grd = resample_2d_linear(x_2, y_2, grd, t, s, y_k, x_k) grd = resample_2d_linear(x_2, y_2, grd, t, s)
# grd = grd[:, y_k, x_k] # grd = grd[:, y_k, x_k]
# return grd return grd
class SRCNN: class SRCNN:
...@@ -705,12 +705,19 @@ def run_evaluate_static(in_file, out_file, ckpt_dir): ...@@ -705,12 +705,19 @@ def run_evaluate_static(in_file, out_file, ckpt_dir):
cld_opd = cld_opd[int(ylen/2):ylen, :] cld_opd = cld_opd[int(ylen/2):ylen, :]
cld_opd_hres = cld_opd.copy() cld_opd_hres = cld_opd.copy()
nn = SRCNN(LEN_Y=2*LEN_Y, LEN_X=2*LEN_X) nn = SRCNN()
slc_x = slice(0, (LEN_X - 16) + 4)
slc_y = slice(0, (LEN_Y - 16) + 4)
x_2 = np.arange((LEN_X - 16) + 4)
y_2 = np.arange((LEN_Y - 16) + 4)
t = np.arange(0, (LEN_X - 16) + 4, 0.5)
s = np.arange(0, (LEN_Y - 16) + 4, 0.5)
refl = np.where(np.isnan(refl), 0, bt) refl = np.where(np.isnan(refl), 0, bt)
refl = refl[nn.slc_y, nn.slc_x] refl = refl[slc_y, slc_x]
refl = np.expand_dims(refl, axis=0) refl = np.expand_dims(refl, axis=0)
refl = nn.upsample(refl) refl = upsample_static(refl, x_2, y_2, t, s)
print(refl.shape) print(refl.shape)
refl = normalize(refl, 'refl_0_65um_nom', mean_std_dct) refl = normalize(refl, 'refl_0_65um_nom', mean_std_dct)
print('REFL done') print('REFL done')
...@@ -718,7 +725,7 @@ def run_evaluate_static(in_file, out_file, ckpt_dir): ...@@ -718,7 +725,7 @@ def run_evaluate_static(in_file, out_file, ckpt_dir):
bt = np.where(np.isnan(bt), 0, bt) bt = np.where(np.isnan(bt), 0, bt)
bt = bt[nn.slc_y, nn.slc_x] bt = bt[nn.slc_y, nn.slc_x]
bt = np.expand_dims(bt, axis=0) bt = np.expand_dims(bt, axis=0)
bt = nn.upsample(bt) bt = upsample_static(bt, x_2, y_2, t, s)
bt = normalize(bt, 'temp_11_0um_nom', mean_std_dct) bt = normalize(bt, 'temp_11_0um_nom', mean_std_dct)
print('BT done') print('BT done')
...@@ -736,7 +743,7 @@ def run_evaluate_static(in_file, out_file, ckpt_dir): ...@@ -736,7 +743,7 @@ def run_evaluate_static(in_file, out_file, ckpt_dir):
cld_opd = np.where(np.isnan(cld_opd), 0, cld_opd) cld_opd = np.where(np.isnan(cld_opd), 0, cld_opd)
cld_opd = cld_opd[nn.slc_y, nn.slc_x] cld_opd = cld_opd[nn.slc_y, nn.slc_x]
cld_opd = np.expand_dims(cld_opd, axis=0) cld_opd = np.expand_dims(cld_opd, axis=0)
cld_opd = nn.upsample(cld_opd) cld_opd = upsample_static(cld_opd, x_2, y_2, t, s)
cld_opd = normalize(cld_opd, label_param, mean_std_dct) cld_opd = normalize(cld_opd, label_param, mean_std_dct)
print('OPD done') print('OPD done')
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment