Skip to content
Snippets Groups Projects
Commit 53d66759 authored by tomrink's avatar tomrink
Browse files

snapshot...

parent 76aa578e
Branches master
No related tags found
No related merge requests found
......@@ -7,6 +7,7 @@ import matplotlib.pyplot as plt
from sklearn.metrics import confusion_matrix, classification_report, accuracy_score, jaccard_score, f1_score, precision_score, recall_score, roc_auc_score
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.neighbors import KNeighborsClassifier
def get_csv_as_dataframe(csv_file):
......@@ -58,6 +59,29 @@ def logistic_regression(x, y):
yhat = LR.predict(x_test)
yhat_prob = LR.predict_proba(x_test)
print(confusion_matrix(y_test, yhat, labels=[1,0]))
print('Accuracy: ', accuracy_score(y_test, yhat))
print('Jaccard Idx: ', jaccard_score(y_test, yhat))
print('Precision: ', precision_score(y_test, yhat))
print('Recall: ', recall_score(y_test, yhat))
print('F1: ', f1_score(y_test, yhat))
print('AUC: ', roc_auc_score(y_test, yhat_prob[:, 1]))
def k_nearest_neighbors(x, y, k=4):
x_train, x_test, y_train, y_test = train_test_split( x, y, test_size=0.2, random_state=4)
print('Train set:', x_train.shape, y_train.shape)
print('Test set:', x_test.shape, y_test.shape)
x_train = np.where(np.isnan(x_train), 0, x_train)
x_test = np.where(np.isnan(x_test), 0, x_test)
print('num no icing test: ', np.sum(y_test == 0))
print('num icing test: ', np.sum(y_test == 1))
KN_C = KNeighborsClassifier(n_neighbors=k).fit(x_train, y_train)
yhat = KN_C.predict(x_test)
yhat_prob = KN_C.predict_proba(x_test)
print(confusion_matrix(y_test, yhat, labels=[1,0]))
print('Accuracy: ', accuracy_score(y_test, yhat))
print('Jaccard Idx: ', jaccard_score(y_test, yhat))
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment