Skip to content
Snippets Groups Projects
Commit 4978b9b0 authored by tomrink's avatar tomrink
Browse files

snapshot...

parent ba2f4deb
No related branches found
No related tags found
No related merge requests found
...@@ -210,12 +210,14 @@ class ESPCN: ...@@ -210,12 +210,14 @@ class ESPCN:
self.n_chans = 1 self.n_chans = 1
self.X_img = tf.keras.Input(shape=(None, None, self.n_chans)) #self.X_img = tf.keras.Input(shape=(None, None, self.n_chans))
# self.X_img = tf.keras.Input(shape=(36, 36, self.n_chans)) # self.X_img = tf.keras.Input(shape=(36, 36, self.n_chans))
self.X_img = tf.keras.Input(shape=(32, 32, self.n_chans))
self.inputs.append(self.X_img) self.inputs.append(self.X_img)
self.inputs.append(tf.keras.Input(shape=(None, None, self.n_chans))) #self.inputs.append(tf.keras.Input(shape=(None, None, self.n_chans)))
# self.inputs.append(tf.keras.Input(shape=(36, 36, self.n_chans))) # self.inputs.append(tf.keras.Input(shape=(36, 36, self.n_chans)))
self.inputs.append(tf.keras.Input(shape=(32, 32, self.n_chans)))
self.DISK_CACHE = False self.DISK_CACHE = False
...@@ -420,20 +422,19 @@ class ESPCN: ...@@ -420,20 +422,19 @@ class ESPCN:
print('input: ', input_2d.shape) print('input: ', input_2d.shape)
# conv = tf.keras.layers.Conv2D(num_filters, kernel_size=5, strides=1, padding='VALID', activation=None)(input_2d) # conv = tf.keras.layers.Conv2D(num_filters, kernel_size=5, strides=1, padding='VALID', activation=None)(input_2d)
conv = input_2d conv = input_2d
print('Contracting Branch')
print('input: ', conv.shape) print('input: ', conv.shape)
skip = conv skip = conv
if NOISE_TRAINING: if NOISE_TRAINING:
conv = tf.keras.layers.GaussianNoise(stddev=NOISE_STDDEV)(conv) conv = tf.keras.layers.GaussianNoise(stddev=NOISE_STDDEV)(conv)
conv = tf.keras.layers.Conv2D(num_filters, kernel_size=3, strides=1, padding=padding, activation=activation)(conv) conv = tf.keras.layers.Conv2D(num_filters, kernel_size=5, strides=1, padding=padding, activation=activation)(conv)
conv = tf.keras.layers.BatchNormalization()(conv) conv = tf.keras.layers.BatchNormalization()(conv)
print(conv.shape) print(conv.shape)
# conv = tf.keras.layers.Conv2D(num_filters, kernel_size=3, strides=1, padding=padding, activation=activation)(conv) conv = tf.keras.layers.Conv2D(num_filters, kernel_size=3, strides=1, padding=padding, activation=activation)(conv)
# conv = tf.keras.layers.BatchNormalization()(conv) conv = tf.keras.layers.BatchNormalization()(conv)
# print(conv.shape) print(conv.shape)
conv = tf.keras.layers.Conv2D(num_filters, kernel_size=3, strides=1, padding=padding, activation=None)(conv) conv = tf.keras.layers.Conv2D(num_filters, kernel_size=3, strides=1, padding=padding, activation=None)(conv)
conv = tf.keras.layers.BatchNormalization()(conv) conv = tf.keras.layers.BatchNormalization()(conv)
...@@ -447,10 +448,15 @@ class ESPCN: ...@@ -447,10 +448,15 @@ class ESPCN:
conv = tf.keras.layers.BatchNormalization()(conv) conv = tf.keras.layers.BatchNormalization()(conv)
print(conv.shape) print(conv.shape)
conv = tf.keras.layers.Conv2D(num_filters/2, kernel_size=3, strides=1, padding=padding, activation=activation)(conv)
conv = tf.keras.layers.BatchNormalization()(conv)
print(conv.shape)
conv = tf.keras.layers.Conv2D(4, kernel_size=3, strides=1, padding=padding, activation=activation)(conv) conv = tf.keras.layers.Conv2D(4, kernel_size=3, strides=1, padding=padding, activation=activation)(conv)
print(conv.shape) print(conv.shape)
conv = tf.nn.depth_to_space(conv, block_size=2) conv = tf.nn.depth_to_space(conv, block_size=2)
conv = tf.keras.layers.Activation(activation=activation)(conv)
print(conv.shape) print(conv.shape)
if NumClasses == 2: if NumClasses == 2:
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment