Skip to content
Snippets Groups Projects
Commit 45865fc1 authored by tomrink's avatar tomrink
Browse files

snapshot...

parent 2c97c1ad
No related branches found
No related tags found
No related merge requests found
...@@ -39,39 +39,11 @@ DO_AUGMENT = True ...@@ -39,39 +39,11 @@ DO_AUGMENT = True
img_width = 16 img_width = 16
mean_std_dct = {} mean_std_file = home_dir+'/viirs_emis_rad_mean_std.pkl'
mean_std_file = ancillary_path+'mean_std_lo_hi_l2.pkl'
f = open(mean_std_file, 'rb') f = open(mean_std_file, 'rb')
mean_std_dct_l2 = pickle.load(f) mean_std_dct = pickle.load(f)
f.close() f.close()
mean_std_file = ancillary_path+'mean_std_lo_hi_l1b.pkl'
f = open(mean_std_file, 'rb')
mean_std_dct_l1b = pickle.load(f)
f.close()
mean_std_dct.update(mean_std_dct_l1b)
mean_std_dct.update(mean_std_dct_l2)
# -- NIGHT L2 -----------------------------
train_params_l2_night = ['cld_height_acha', 'cld_geo_thick', 'cld_temp_acha', 'cld_press_acha', 'supercooled_cloud_fraction',
'cld_emiss_acha', 'conv_cloud_fraction', 'cld_reff_acha', 'cld_opd_acha']
# -- DAY L2 --------------------------------
train_params_l2_day = ['cld_height_acha', 'cld_geo_thick', 'cld_temp_acha', 'cld_press_acha', 'supercooled_cloud_fraction',
'cld_emiss_acha', 'conv_cloud_fraction', 'cld_reff_dcomp', 'cld_opd_dcomp', 'iwc_dcomp', 'lwc_dcomp']
# -- DAY L1B --------------------------------
train_params_l1b_day = ['temp_10_4um_nom', 'temp_11_0um_nom', 'temp_12_0um_nom', 'temp_13_3um_nom', 'temp_3_75um_nom',
'temp_6_2um_nom', 'temp_6_7um_nom', 'temp_7_3um_nom', 'temp_8_5um_nom', 'temp_9_7um_nom',
'refl_0_47um_nom', 'refl_0_65um_nom', 'refl_0_86um_nom', 'refl_1_38um_nom', 'refl_1_60um_nom']
# -- NIGHT L1B -------------------------------
train_params_l1b_night = ['temp_10_4um_nom', 'temp_11_0um_nom', 'temp_12_0um_nom', 'temp_13_3um_nom', 'temp_3_75um_nom',
'temp_6_2um_nom', 'temp_6_7um_nom', 'temp_7_3um_nom', 'temp_8_5um_nom', 'temp_9_7um_nom']
# -- DAY LUNAR ---------------------------------
# train_params_l1b = ['cld_height_acha', 'cld_geo_thick', 'cld_temp_acha', 'cld_press_acha', 'supercooled_cloud_fraction',
# 'cld_emiss_acha', 'conv_cloud_fraction', 'cld_reff_dcomp', 'cld_opd_dcomp', 'iwc_dcomp', 'lwc_dcomp']
# ---------------------------------------------
train_params = train_params_l1b_day + train_params_l2_day
# -- Zero out params (Experimentation Only) ------------ # -- Zero out params (Experimentation Only) ------------
zero_out_params = ['cld_reff_dcomp', 'cld_opd_dcomp', 'iwc_dcomp', 'lwc_dcomp'] zero_out_params = ['cld_reff_dcomp', 'cld_opd_dcomp', 'iwc_dcomp', 'lwc_dcomp']
DO_ZERO_OUT = False DO_ZERO_OUT = False
...@@ -335,19 +307,45 @@ class UNET: ...@@ -335,19 +307,45 @@ class UNET:
def get_in_mem_data_batch(self, idxs, is_training): def get_in_mem_data_batch(self, idxs, is_training):
if is_training: if is_training:
data = self.train_data_nda[idxs,] train_data = []
label_data = []
for k in idxs:
f = self.train_data_files[k]
nda = np.load(f)
train_data.append(nda)
f = self.train_label_files[k]
nda = np.load(f)
label_data.append(nda)
data = np.concatenate(train_data)
data = np.expand_dims(data, axis=3) data = np.expand_dims(data, axis=3)
label = self.train_label_nda[idxs,] label = np.concatenate(label_data)
label = np.expand_dims(label, axis=3) label = np.expand_dims(label, axis=3)
else: else:
data = self.test_data_nda[idxs,] train_data = []
label_data = []
for k in idxs:
f = self.test_data_files[k]
nda = np.load(f)
train_data.append(nda)
f = self.test_label_files[k]
nda = np.load(f)
label_data.append(nda)
data = np.concatenate(train_data)
data = np.expand_dims(data, axis=3) data = np.expand_dims(data, axis=3)
label = self.test_label_nda[idxs,]
label = np.concatenate(label_data)
label = np.expand_dims(label, axis=3) label = np.expand_dims(label, axis=3)
data = data.astype(np.float32) data = data.astype(np.float32)
label = label.astype(np.float32) label = label.astype(np.float32)
normalize(data, 'M15', mean_std_dct)
normalize(label, 'M15', mean_std_dct)
if is_training and DO_AUGMENT: if is_training and DO_AUGMENT:
data_ud = np.flip(data, axis=1) data_ud = np.flip(data, axis=1)
label_ud = np.flip(label, axis=1) label_ud = np.flip(label, axis=1)
...@@ -1113,8 +1111,10 @@ class UNET: ...@@ -1113,8 +1111,10 @@ class UNET:
self.build_evaluation() self.build_evaluation()
self.do_training() self.do_training()
def run_test(self, data_nda, label_nda): def run_test(self, directory):
self.setup_pipeline(data_nda, label_nda) data_files = glob.glob(directory+'mod_res*.npy')
label_files = [f.replace('mod', 'img') for f in data_files]
self.setup_pipeline_files(data_files, label_files)
self.build_model() self.build_model()
self.build_training() self.build_training()
self.build_evaluation() self.build_evaluation()
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment