Skip to content
Snippets Groups Projects
Commit 454c87bd authored by tomrink's avatar tomrink
Browse files

snapshot...

parent 94349b40
No related branches found
No related tags found
No related merge requests found
import glob import glob
import tensorflow as tf import tensorflow as tf
import util.util
from util.setup import logdir, modeldir, cachepath, now, ancillary_path from util.setup import logdir, modeldir, cachepath, now, ancillary_path
from util.util import EarlyStop, normalize, denormalize, resample, resample_2d_linear, resample_one,\ from util.util import EarlyStop, normalize, denormalize, resample, resample_2d_linear, resample_one,\
resample_2d_linear_one, get_grid_values_all, add_noise, smooth_2d, smooth_2d_single resample_2d_linear_one, get_grid_values_all, add_noise, smooth_2d, smooth_2d_single
...@@ -766,6 +768,82 @@ def run_evaluate_static(in_file, out_file, ckpt_dir): ...@@ -766,6 +768,82 @@ def run_evaluate_static(in_file, out_file, ckpt_dir):
return out_sr, hr_grd_a, hr_grd_c return out_sr, hr_grd_a, hr_grd_c
def analyze(file='/Users/tomrink/cld_opd_out.npy'):
# Save this:
# nn.test_data_files = glob.glob('/Users/tomrink/data/clavrx_opd_valid_DAY/data_valid*.npy')
# idxs = np.arange(50)
# dat, lbl = nn.get_in_mem_data_batch(idxs, False)
# tmp = dat[:, 1:128, 1:128, 1]
# tmp = dat[:, 1:129, 1:129, 1]
tup = np.load(file, allow_pickle=True)
lbls = tup[0]
pred = tup[1]
lbls = lbls[:, :, :, 0]
pred = pred[:, :, :, 0]
diff = pred - lbls
mae = (np.sum(np.abs(diff))) / diff.size
print('MAE: ', mae)
bin_ranges = util.util.get_bin_ranges(0.0, 160.0, 20.0)
bin_edges = []
bin_ranges = []
bin_ranges.append([0.0, 5.0])
bin_edges.append(0.0)
bin_ranges.append([5.0, 10.0])
bin_edges.append(5.0)
bin_ranges.append([10.0, 15.0])
bin_edges.append(10.0)
bin_ranges.append([15.0, 20.0])
bin_edges.append(15.0)
bin_ranges.append([20.0, 30.0])
bin_edges.append(20.0)
bin_ranges.append([30.0, 40.0])
bin_edges.append(30.0)
bin_ranges.append([40.0, 60.0])
bin_edges.append(40.0)
bin_ranges.append([60.0, 80.0])
bin_edges.append(60.0)
bin_ranges.append([80.0, 100.0])
bin_edges.append(80.0)
bin_ranges.append([100.0, 120.0])
bin_edges.append(100.0)
bin_ranges.append([120.0, 140.0])
bin_edges.append(120.0)
bin_ranges.append([140.0, 160.0])
bin_edges.append(140.0)
bin_edges.append(160.0)
diff_by_value_bins = util.util.bin_data_by(diff.flatten(), lbls.flatten(), bin_ranges)
values = []
for k in range(len(bin_ranges)):
diff_k = diff_by_value_bins[k]
mae_k = (np.sum(np.abs(diff_k)) / diff_k.size)
values.append(int(mae_k/bin_ranges[k][1] * 100.0))
print('MAE: ', diff_k.size, bin_ranges[k], mae_k)
return np.array(values), bin_edges
if __name__ == "__main__": if __name__ == "__main__":
nn = SRCNN() nn = SRCNN()
nn.run('matchup_filename') nn.run('matchup_filename')
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment