Skip to content
Snippets Groups Projects
Commit 430ecf92 authored by tomrink's avatar tomrink
Browse files

snapshot...

parent ae1b06f4
No related branches found
No related tags found
No related merge requests found
......@@ -62,7 +62,7 @@ IMG_DEPTH = 1
# label_param = 'cld_opd_dcomp'
label_param = 'cloud_probability'
params = ['temp_11_0um_nom', 'temp_12_0um_nom', 'refl_0_65um_nom', label_param]
params = ['temp_11_0um_nom', 'refl_0_65um_nom', label_param]
data_params_half = ['temp_11_0um_nom']
data_params_full = ['refl_0_65um_nom']
......@@ -175,46 +175,35 @@ def upsample(tmp):
return tmp
def upsample_nearest(tmp):
bsize = tmp.shape[0]
tmp_2 = tmp[:, slc_y_2, slc_x_2]
up = np.zeros(bsize, t.size, s.size)
for k in range(bsize):
for j in range(t.size/2):
for i in range(s.size/2):
up[k, j, i] = tmp_2[k, j, i]
up[k, j, i+1] = tmp_2[k, j, i]
up[k, j+1, i] = tmp_2[k, j, i]
up[k, j+1, i+1] = tmp_2[k, j, i]
return up
def get_label_data(grd_k):
grd_k = np.where(np.isnan(grd_k), 0, grd_k)
grd_k = np.where(grd_k < 0.5, 0, 1)
# grd_k = np.where(grd_k < 0.5, 0, 1)
a = grd_k[:, 0::2, 0::2]
b = grd_k[:, 1::2, 0::2]
c = grd_k[:, 0::2, 1::2]
d = grd_k[:, 1::2, 1::2]
s_t = a + b + c + d
#s_t = np.where(s_t == 0, 0, s_t)
#s_t = np.where(s_t == 1, 1, s_t)
#s_t = np.where(s_t == 2, 1, s_t)
#s_t = np.where(s_t == 3, 1, s_t)
#s_t = np.where(s_t == 4, 2, s_t)
# s_t = np.where(s_t == 0, 0, s_t)
# s_t = np.where(s_t == 1, 1, s_t)
# s_t = np.where(s_t == 2, 1, s_t)
# s_t = np.where(s_t == 3, 1, s_t)
# s_t = np.where(s_t == 4, 2, s_t)
s_t /= 4.0
return s_t
blen, ylen, xlen = s_t.shape
s_t = s_t.flatten()
cat_0 = np.logical_and(s_t >= 0.0, s_t < 0.2)
cat_1 = np.logical_and(s_t >= 0.2, s_t < 0.8)
cat_2 = np.logical_and(s_t >= 0.8, s_t <= 1.0)
s_t[cat_0] = 0
s_t[cat_1] = 1
s_t[cat_2] = 2
# def get_label_data(grd_k):
# grd_k = np.where(np.isnan(grd_k), 0, grd_k)
# grd_k = np.where((grd_k >= 0.0) & (grd_k < 0.3), 0, grd_k)
# grd_k = np.where((grd_k >= 0.3) & (grd_k < 0.7), 1, grd_k)
# grd_k = np.where((grd_k >= 0.7) & (grd_k <= 1.0), 2, grd_k)
#
# return grd_k
s_t = s_t.reshape((blen, ylen, xlen))
return s_t
class SRCNN:
......@@ -555,10 +544,10 @@ class SRCNN:
# self.loss = tf.keras.losses.MeanAbsoluteError() # Regression
# decayed_learning_rate = learning_rate * decay_rate ^ (global_step / decay_steps)
initial_learning_rate = 0.005
initial_learning_rate = 0.006
decay_rate = 0.95
steps_per_epoch = int(self.num_data_samples/BATCH_SIZE) # one epoch
decay_steps = int(steps_per_epoch)
decay_steps = int(steps_per_epoch) * 4
print('initial rate, decay rate, steps/epoch, decay steps: ', initial_learning_rate, decay_rate, steps_per_epoch, decay_steps)
self.learningRateSchedule = tf.keras.optimizers.schedules.ExponentialDecay(initial_learning_rate, decay_steps, decay_rate)
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment