Skip to content
Snippets Groups Projects
Commit 41292d1d authored by tomrink's avatar tomrink
Browse files

snapshot...

parent 86c08ace
Branches
No related tags found
No related merge requests found
...@@ -137,22 +137,30 @@ class OpdNpyDataset: ...@@ -137,22 +137,30 @@ class OpdNpyDataset:
self.hr_size = hr_size self.hr_size = hr_size
self.lr_size = lr_size self.lr_size = lr_size
def integer_gen(limit): # def integer_gen(limit):
n = 0 # n = 0
while n < limit: # while n < limit:
yield n # yield n
n += 1 # n += 1
#
num_gen = integer_gen(self.num_files) # num_gen = integer_gen(self.num_files)
gen = make_tf_callable_generator(num_gen) # gen = make_tf_callable_generator(num_gen)
dataset = tf.data.Dataset.from_generator(gen, output_types=tf.int32) # dataset = tf.data.Dataset.from_generator(gen, output_types=tf.int32)
# dataset = dataset.batch(batch_size)
# dataset = dataset.map(self.data_function, num_parallel_calls=8)
# # These execute w/o an iteration on dataset?
# # dataset = dataset.map(scale_down(), num_parallel_calls=1)
# # dataset = dataset.map(augment_image(), num_parallel_calls=1)
#
# dataset = dataset.cache()
# dataset = dataset.prefetch(buffer_size=1)
file_idxs = np.arange(len(self.num_files))
dataset = tf.data.Dataset.from_tensor_slices(list(file_idxs))
dataset = dataset.shuffle(2000, reshuffle_each_iteration=True)
dataset = dataset.batch(batch_size) dataset = dataset.batch(batch_size)
dataset = dataset.map(self.data_function, num_parallel_calls=8) dataset = dataset.map(self.data_function, num_parallel_calls=8)
# These execute w/o an iteration on dataset? # dataset = dataset.cache()
# dataset = dataset.map(scale_down(), num_parallel_calls=1)
# dataset = dataset.map(augment_image(), num_parallel_calls=1)
dataset = dataset.cache()
dataset = dataset.prefetch(buffer_size=1) dataset = dataset.prefetch(buffer_size=1)
self.dataset = dataset self.dataset = dataset
...@@ -160,12 +168,12 @@ class OpdNpyDataset: ...@@ -160,12 +168,12 @@ class OpdNpyDataset:
def read_numpy_file_s(self, f_idxs): def read_numpy_file_s(self, f_idxs):
data_s = [] data_s = []
for fi in f_idxs: for fi in f_idxs:
fname = self.filenames[fi] fname = self.filenames[fi]
data = np.load(fname) data = np.load(fname)
data = data[0, ] data = data[0, ]
data = scale(data, 'cld_opd_dcomp', mean_std_dct) data = scale(data, 'cld_opd_dcomp', mean_std_dct)
data = data.astype(np.float32) data = data.astype(np.float32)
data_s.append(data) data_s.append(data)
hr_image = np.concatenate(data_s) hr_image = np.concatenate(data_s)
hr_image = tf.expand_dims(hr_image, axis=3) hr_image = tf.expand_dims(hr_image, axis=3)
hr_image = tf.image.crop_to_bounding_box(hr_image, 0, 0, self.hr_size, self.hr_size) hr_image = tf.image.crop_to_bounding_box(hr_image, 0, 0, self.hr_size, self.hr_size)
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment