Skip to content
Snippets Groups Projects
Commit 3d471154 authored by tomrink's avatar tomrink
Browse files

snapshot...

parent e127f113
No related branches found
No related tags found
No related merge requests found
......@@ -361,9 +361,8 @@ class ESPCN:
self.get_evaluate_dataset(idxs)
def build_espcn(self, do_drop_out=False, do_batch_norm=False, drop_rate=0.5):
def build_espcn(self, do_drop_out=False, do_batch_norm=False, drop_rate=0.5, factor=2):
print('build_cnn')
# padding = "VALID"
padding = "SAME"
# activation = tf.nn.relu
......@@ -371,78 +370,36 @@ class ESPCN:
activation = tf.nn.leaky_relu
momentum = 0.99
# num_filters = len(self.train_params) * 4
num_filters = self.n_chans * 64
num_filters = 64
input_2d = self.inputs[0]
print('input: ', input_2d.shape)
# conv = tf.keras.layers.Conv2D(num_filters, kernel_size=5, strides=1, padding='VALID', activation=None)(input_2d)
conv = input_2d
print('input: ', conv.shape)
skip = conv
conv = conv_b = tf.keras.layers.Conv2D(num_filters, kernel_size=3, padding=padding)(input_2d)
if NOISE_TRAINING:
conv = tf.keras.layers.GaussianNoise(stddev=NOISE_STDDEV)(conv)
if do_drop_out:
conv = tf.keras.layers.Dropout(drop_rate)(conv)
if do_batch_norm:
conv = tf.keras.layers.BatchNormalization()(conv)
conv = tf.keras.layers.Conv2D(num_filters, kernel_size=5, strides=1, padding=padding, activation=activation)(conv)
print(conv.shape)
if do_drop_out:
conv = tf.keras.layers.Dropout(drop_rate)(conv)
if do_batch_norm:
conv = tf.keras.layers.BatchNormalization()(conv)
conv = tf.keras.layers.Conv2D(num_filters, kernel_size=3, strides=1, padding=padding, activation=activation)(conv)
print(conv.shape)
# conv = tf.keras.layers.Conv2D(num_filters, kernel_size=3, strides=1, padding=padding, activation=None)(conv)
# conv = tf.keras.layers.BatchNormalization()(conv)
# print(conv.shape)
#
# conv = conv + skip
# conv = tf.keras.layers.LeakyReLU()(conv)
# print(conv.shape)
if do_drop_out:
conv = tf.keras.layers.Dropout(drop_rate)(conv)
if do_batch_norm:
conv = tf.keras.layers.BatchNormalization()(conv)
conv = tf.keras.layers.Conv2D(num_filters // 2, kernel_size=3, strides=1, padding=padding, activation=activation)(conv)
conv = tf.keras.layers.BatchNormalization()(conv)
print(conv.shape)
conv_b = build_conv2d_block(conv_b, num_filters, 'Residual_Block_1')
if do_drop_out:
conv = tf.keras.layers.Dropout(drop_rate)(conv)
if do_batch_norm:
conv = tf.keras.layers.BatchNormalization()(conv)
conv_b = build_conv2d_block(conv_b, num_filters, 'Residual_Block_2')
# conv = tf.keras.layers.Conv2D(num_filters // 2, kernel_size=3, strides=1, padding=padding, activation=activation)(conv)
# print(conv.shape)
conv_b = build_conv2d_block(conv_b, num_filters, 'Residual_Block_3')
conv = tf.keras.layers.Conv2DTranspose(num_filters // 4, kernel_size=4, strides=2, padding=padding, activation=activation)(conv)
print(conv.shape)
conv_b = tf.keras.layers.Conv2D(num_filters, kernel_size=3, strides=1, padding=padding)(conv_b)
conv = tf.keras.layers.Conv2DTranspose(num_filters // 4, kernel_size=1, strides=1, padding=padding, activation=activation)(conv)
print(conv.shape)
conv = conv + conv_b
conv = tf.keras.layers.Conv2DTranspose(num_filters // 4, kernel_size=1, strides=1, padding=padding, activation=activation)(conv)
print(conv.shape)
conv = tf.keras.layers.Conv2D(num_filters * (factor ** 2), 3, padding='same')(conv)
#self.logits = tf.keras.layers.Conv2D(1, kernel_size=1, strides=1, padding=padding, name='probability', activation=tf.nn.sigmoid)(conv)
self.logits = tf.keras.layers.Conv2D(1, kernel_size=1, strides=1, padding=padding, name='probability')(conv)
conv = tf.nn.depth_to_space(conv, factor)
# conv = tf.nn.depth_to_space(conv, block_size=2)
# conv = tf.keras.layers.Activation(activation=activation)(conv)
# print(conv.shape)
#
# # Called logits, but these are actually probabilities, see activation
# self.logits = tf.keras.layers.Activation(activation=activation)(conv)
self.logits = tf.keras.layers.Conv2D(1, kernel_size=3, strides=1, padding=padding, name='regression')(conv)
print(self.logits.shape)
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment