Skip to content
Snippets Groups Projects
Commit 3c2f1b33 authored by tomrink's avatar tomrink
Browse files

snapshot...

parent d327bdae
No related branches found
No related tags found
No related merge requests found
...@@ -557,7 +557,7 @@ class IcingIntensityFCN: ...@@ -557,7 +557,7 @@ class IcingIntensityFCN:
self.get_evaluate_dataset(idxs) self.get_evaluate_dataset(idxs)
def build_cnn(self): def build_cnn(self, do_drop_out=False, do_batch_norm=True, drop_rate=0.5):
print('build_cnn') print('build_cnn')
# padding = "VALID" # padding = "VALID"
padding = "SAME" padding = "SAME"
...@@ -578,12 +578,18 @@ class IcingIntensityFCN: ...@@ -578,12 +578,18 @@ class IcingIntensityFCN:
conv = tf.keras.layers.Conv2D(num_filters, kernel_size=5, strides=1, padding=padding, activation=activation)(conv) conv = tf.keras.layers.Conv2D(num_filters, kernel_size=5, strides=1, padding=padding, activation=activation)(conv)
conv = tf.keras.layers.MaxPool2D(padding=padding)(conv) conv = tf.keras.layers.MaxPool2D(padding=padding)(conv)
conv = tf.keras.layers.BatchNormalization()(conv) if do_drop_out:
conv = tf.keras.layers.Dropout(drop_rate)(conv)
if do_batch_norm:
conv = tf.keras.layers.BatchNormalization()(conv)
print(conv.shape) print(conv.shape)
skip = tf.keras.layers.Conv2D(num_filters, kernel_size=3, strides=1, padding=padding, activation=None)(skip) skip = tf.keras.layers.Conv2D(num_filters, kernel_size=3, strides=1, padding=padding, activation=None)(skip)
skip = tf.keras.layers.MaxPool2D(padding=padding)(skip) skip = tf.keras.layers.MaxPool2D(padding=padding)(skip)
skip = tf.keras.layers.BatchNormalization()(skip) if do_drop_out:
skip = tf.keras.layers.Dropout(drop_rate)(skip)
if do_batch_norm:
skip = tf.keras.layers.BatchNormalization()(skip)
conv = conv + skip conv = conv + skip
conv = tf.keras.layers.LeakyReLU()(conv) conv = tf.keras.layers.LeakyReLU()(conv)
...@@ -594,12 +600,18 @@ class IcingIntensityFCN: ...@@ -594,12 +600,18 @@ class IcingIntensityFCN:
num_filters *= 2 num_filters *= 2
conv = tf.keras.layers.Conv2D(num_filters, kernel_size=3, strides=1, padding=padding, activation=activation)(conv) conv = tf.keras.layers.Conv2D(num_filters, kernel_size=3, strides=1, padding=padding, activation=activation)(conv)
conv = tf.keras.layers.MaxPool2D(padding=padding)(conv) conv = tf.keras.layers.MaxPool2D(padding=padding)(conv)
conv = tf.keras.layers.BatchNormalization()(conv) if do_drop_out:
conv = tf.keras.layers.Dropout(drop_rate)(conv)
if do_batch_norm:
conv = tf.keras.layers.BatchNormalization()(conv)
print(conv.shape) print(conv.shape)
skip = tf.keras.layers.Conv2D(num_filters, kernel_size=3, strides=1, padding=padding, activation=None)(skip) skip = tf.keras.layers.Conv2D(num_filters, kernel_size=3, strides=1, padding=padding, activation=None)(skip)
skip = tf.keras.layers.MaxPool2D(padding=padding)(skip) skip = tf.keras.layers.MaxPool2D(padding=padding)(skip)
skip = tf.keras.layers.BatchNormalization()(skip) if do_drop_out:
skip = tf.keras.layers.Dropout(drop_rate)(skip)
if do_batch_norm:
skip = tf.keras.layers.BatchNormalization()(skip)
conv = conv + skip conv = conv + skip
conv = tf.keras.layers.LeakyReLU()(conv) conv = tf.keras.layers.LeakyReLU()(conv)
...@@ -610,12 +622,18 @@ class IcingIntensityFCN: ...@@ -610,12 +622,18 @@ class IcingIntensityFCN:
num_filters *= 2 num_filters *= 2
conv = tf.keras.layers.Conv2D(num_filters, kernel_size=3, strides=1, padding=padding, activation=activation)(conv) conv = tf.keras.layers.Conv2D(num_filters, kernel_size=3, strides=1, padding=padding, activation=activation)(conv)
conv = tf.keras.layers.MaxPool2D(padding=padding)(conv) conv = tf.keras.layers.MaxPool2D(padding=padding)(conv)
conv = tf.keras.layers.BatchNormalization()(conv) if do_drop_out:
conv = tf.keras.layers.Dropout(drop_rate)(conv)
if do_batch_norm:
conv = tf.keras.layers.BatchNormalization()(conv)
print(conv.shape) print(conv.shape)
skip = tf.keras.layers.Conv2D(num_filters, kernel_size=3, strides=1, padding=padding, activation=None)(skip) skip = tf.keras.layers.Conv2D(num_filters, kernel_size=3, strides=1, padding=padding, activation=None)(skip)
skip = tf.keras.layers.MaxPool2D(padding=padding)(skip) skip = tf.keras.layers.MaxPool2D(padding=padding)(skip)
skip = tf.keras.layers.BatchNormalization()(skip) if do_drop_out:
skip = tf.keras.layers.Dropout(drop_rate)(skip)
if do_batch_norm:
skip = tf.keras.layers.BatchNormalization()(skip)
conv = conv + skip conv = conv + skip
conv = tf.keras.layers.LeakyReLU()(conv) conv = tf.keras.layers.LeakyReLU()(conv)
...@@ -625,12 +643,18 @@ class IcingIntensityFCN: ...@@ -625,12 +643,18 @@ class IcingIntensityFCN:
num_filters *= 2 num_filters *= 2
conv = tf.keras.layers.Conv2D(num_filters, kernel_size=3, strides=1, padding=padding, activation=activation)(conv) conv = tf.keras.layers.Conv2D(num_filters, kernel_size=3, strides=1, padding=padding, activation=activation)(conv)
conv = tf.keras.layers.MaxPool2D(padding=padding)(conv) conv = tf.keras.layers.MaxPool2D(padding=padding)(conv)
conv = tf.keras.layers.BatchNormalization()(conv) if do_drop_out:
conv = tf.keras.layers.Dropout(drop_rate)(conv)
if do_batch_norm:
conv = tf.keras.layers.BatchNormalization()(conv)
print(conv.shape) print(conv.shape)
skip = tf.keras.layers.Conv2D(num_filters, kernel_size=3, strides=1, padding=padding, activation=None)(skip) skip = tf.keras.layers.Conv2D(num_filters, kernel_size=3, strides=1, padding=padding, activation=None)(skip)
skip = tf.keras.layers.MaxPool2D(padding=padding)(skip) skip = tf.keras.layers.MaxPool2D(padding=padding)(skip)
skip = tf.keras.layers.BatchNormalization()(skip) if do_drop_out:
skip = tf.keras.layers.Dropout(drop_rate)(skip)
if do_batch_norm:
skip = tf.keras.layers.BatchNormalization()(skip)
conv = conv + skip conv = conv + skip
conv = tf.keras.layers.LeakyReLU()(conv) conv = tf.keras.layers.LeakyReLU()(conv)
...@@ -651,9 +675,9 @@ class IcingIntensityFCN: ...@@ -651,9 +675,9 @@ class IcingIntensityFCN:
conv = build_residual_block_1x1(conv, num_filters, activation, 'Residual_Block_2', padding=padding) conv = build_residual_block_1x1(conv, num_filters, activation, 'Residual_Block_2', padding=padding)
# conv = build_residual_block_1x1(conv, num_filters, activation, 'Residual_Block_3', padding=padding) conv = build_residual_block_1x1(conv, num_filters, activation, 'Residual_Block_3', padding=padding)
# conv = build_residual_block_1x1(conv, num_filters, activation, 'Residual_Block_4', padding=padding) conv = build_residual_block_1x1(conv, num_filters, activation, 'Residual_Block_4', padding=padding)
# conv = build_residual_block_1x1(conv, num_filters, activation, 'Residual_Block_5', padding=padding) # conv = build_residual_block_1x1(conv, num_filters, activation, 'Residual_Block_5', padding=padding)
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment