Skip to content
Snippets Groups Projects
Commit 3a9b247e authored by tomrink's avatar tomrink
Browse files

snapshot...

parent 56629643
Branches
No related tags found
No related merge requests found
...@@ -826,7 +826,7 @@ def compare_amvs_bestfit_driver(all_list, bin_size=200): ...@@ -826,7 +826,7 @@ def compare_amvs_bestfit_driver(all_list, bin_size=200):
amvs = np.concatenate(amvs_list) amvs = np.concatenate(amvs_list)
bfs = np.concatenate(bfs_list) bfs = np.concatenate(bfs_list)
rbm = np.concatenate(rb_list) rbm = np.concatenate(rb_list)
#bfs_gfs = np.concatenate(bfs_gfs_list) bfs_gfs = np.concatenate(bfs_gfs_list)
prd = np.concatenate(prd_list) prd = np.concatenate(prd_list)
thin = np.logical_and(prd[:, 2] > 0, prd[:, 2] < 1) thin = np.logical_and(prd[:, 2] > 0, prd[:, 2] < 1)
...@@ -841,35 +841,53 @@ def compare_amvs_bestfit_driver(all_list, bin_size=200): ...@@ -841,35 +841,53 @@ def compare_amvs_bestfit_driver(all_list, bin_size=200):
bfs_thick = bfs[thick, :] bfs_thick = bfs[thick, :]
bfs_deep = bfs[deep, :] bfs_deep = bfs[deep, :]
#bfs_gfs_thin = bfs_gfs[thin, :] bfs_gfs_thin = bfs_gfs[thin, :]
#bfs_gfs_thick = bfs_gfs[thick, :] bfs_gfs_thick = bfs_gfs[thick, :]
#bfs_gfs_deep = bfs_gfs[deep, :] bfs_gfs_deep = bfs_gfs[deep, :]
rbm_thin = rbm[thin, :] rbm_thin = rbm[thin, :]
rbm_thick = rbm[thick, :] rbm_thick = rbm[thick, :]
rbm_deep = rbm[deep, :] rbm_deep = rbm[deep, :]
values = [] # values_pres = []
# bin_ranges, bin_pres, bin_spd, bin_dir = compare_amvs_bestfit(amvs_thin, bfs_thin, bin_size=bin_size) # bin_ranges, bin_pres, bin_spd, bin_dir = compare_amvs_bestfit(amvs_thin, bfs_thin, bin_size=bin_size)
# values.append(bin_pres) # values_pres.append(bin_pres)
# #
# bin_ranges, bin_pres, bin_spd, bin_dir = compare_amvs_bestfit(amvs_thick, bfs_thick, bin_size=bin_size) # bin_ranges, bin_pres, bin_spd, bin_dir = compare_amvs_bestfit(amvs_thick, bfs_thick, bin_size=bin_size)
# values.append(bin_pres) # values_pres.append(bin_pres)
# #
# bin_ranges, bin_pres, bin_spd, bin_dir = compare_amvs_bestfit(amvs, bfs, bin_size=bin_size) # bin_ranges, bin_pres, bin_spd, bin_dir = compare_amvs_bestfit(amvs, bfs, bin_size=bin_size)
# values.append(bin_pres) # values_pres.append(bin_pres)
#
# values_spd = []
# bin_ranges, bin_pres, bin_spd, bin_dir = compare_amvs_bestfit(amvs_thin, bfs_gfs_thin, bin_size=bin_size)
# values_spd.append(bin_spd)
#
# bin_ranges, bin_pres, bin_spd, bin_dir = compare_amvs_bestfit(amvs_thick, bfs_gfs_thick, bin_size=bin_size)
# values_spd.append(bin_spd)
#
# bin_ranges, bin_pres, bin_spd, bin_dir = compare_amvs_bestfit(amvs, bfs_gfs, bin_size=bin_size)
# values_spd.append(bin_spd)
values = [] values_prs = []
values_spd = []
values_dir = []
bin_ranges, bin_pres, bin_spd, bin_dir = compare_amvs_bestfit(amvs_thin, rbm_thin, bin_size=bin_size) bin_ranges, bin_pres, bin_spd, bin_dir = compare_amvs_bestfit(amvs_thin, rbm_thin, bin_size=bin_size)
values.append(bin_spd) values_prs.append(bin_pres)
values_spd.append(bin_spd)
values_dir.append(bin_dir)
bin_ranges, bin_pres, bin_spd, bin_dir = compare_amvs_bestfit(amvs_thick, rbm_thick, bin_size=bin_size) bin_ranges, bin_pres, bin_spd, bin_dir = compare_amvs_bestfit(amvs_thick, rbm_thick, bin_size=bin_size)
values.append(bin_spd) values_prs.append(bin_pres)
values_spd.append(bin_spd)
values_dir.append(bin_dir)
bin_ranges, bin_pres, bin_spd, bin_dir = compare_amvs_bestfit(amvs, rbm, bin_size=bin_size) bin_ranges, bin_pres, bin_spd, bin_dir = compare_amvs_bestfit(amvs, rbm, bin_size=bin_size)
values.append(bin_spd) values_prs.append(bin_pres)
values_spd.append(bin_spd)
values_dir.append(bin_dir)
make_plot(bin_ranges, values) return bin_ranges, values_prs, values_spd, values_dir
def compare_amvs_bestfit(amvs, bfs, bin_size=200): def compare_amvs_bestfit(amvs, bfs, bin_size=200):
...@@ -939,9 +957,11 @@ def compare_amvs_bestfit(amvs, bfs, bin_size=200): ...@@ -939,9 +957,11 @@ def compare_amvs_bestfit(amvs, bfs, bin_size=200):
amv_spd = good_amvs[keep_idxs, sidx] amv_spd = good_amvs[keep_idxs, sidx]
amv_dir = good_amvs[keep_idxs, didx] amv_dir = good_amvs[keep_idxs, didx]
bf_spd, bf_dir = spd_dir_from_uv(bfs[keep_idxs, 0], bfs[keep_idxs, 1]) bf_spd, bf_dir = spd_dir_from_uv(bfs[keep_idxs, 0], bfs[keep_idxs, 1])
# bf_spd, bf_dir = bfs[keep_idxs, 0], bfs[keep_idxs, 1]
diff = amv_spd * units('m/s') - bf_spd diff = amv_spd * units('m/s') - bf_spd
diff = diff.magnitude diff = diff.magnitude
# diff = amv_spd - bf_spd
spd_mad = np.average(np.abs(diff)) spd_mad = np.average(np.abs(diff))
spd_bias = np.average(diff) spd_bias = np.average(diff)
print('spd, MAD: {0:.2f}'.format(spd_mad)) print('spd, MAD: {0:.2f}'.format(spd_mad))
...@@ -953,6 +973,7 @@ def compare_amvs_bestfit(amvs, bfs, bin_size=200): ...@@ -953,6 +973,7 @@ def compare_amvs_bestfit(amvs, bfs, bin_size=200):
bin_spd = bin_data_by(diff, amv_p, bin_ranges) bin_spd = bin_data_by(diff, amv_p, bin_ranges)
dir_diff = direction_difference(amv_dir, bf_dir.magnitude) dir_diff = direction_difference(amv_dir, bf_dir.magnitude)
# dir_diff = direction_difference(amv_dir, bf_dir)
print('dir, MAD: {0:.2f}'.format(np.average(np.abs(dir_diff)))) print('dir, MAD: {0:.2f}'.format(np.average(np.abs(dir_diff))))
print('dir bias: {0:.2f}'.format(np.average(dir_diff))) print('dir bias: {0:.2f}'.format(np.average(dir_diff)))
print('-------------------------------------') print('-------------------------------------')
...@@ -999,11 +1020,13 @@ def make_plot(bin_ranges, bin_values): ...@@ -999,11 +1020,13 @@ def make_plot(bin_ranges, bin_values):
num_vals = [] num_vals = []
mad = [] mad = []
bias = [] bias = []
std = []
mad_r = [] mad_r = []
bias_r = [] bias_r = []
std_r = []
mad_g = [] mad_g = []
bias_g = [] bias_g = []
std_g = []
num_r = 0 num_r = 0
num_g = 0 num_g = 0
...@@ -1016,27 +1039,35 @@ def make_plot(bin_ranges, bin_values): ...@@ -1016,27 +1039,35 @@ def make_plot(bin_ranges, bin_values):
for i in range(len(bin_ranges)): for i in range(len(bin_ranges)):
x_values.append(np.average(bin_ranges[i])) x_values.append(np.average(bin_ranges[i]))
num_vals_r.append((bin_vals_r[i].shape[0])/num_r) # num_vals_r.append((bin_vals_r[i].shape[0])/num_r)
num_vals_g.append((bin_vals_g[i].shape[0])/num_g) # num_vals_g.append((bin_vals_g[i].shape[0])/num_g)
num_vals.append((bin_vals[i].shape[0])/num) # num_vals.append((bin_vals[i].shape[0])/num)
num_vals_r.append(np.log10(bin_vals_r[i].shape[0]))
num_vals_g.append(np.log10(bin_vals_g[i].shape[0]))
num_vals.append(np.log10(bin_vals[i].shape[0]))
mad_r.append(np.average(np.abs(bin_vals_r[i]))) mad_r.append(np.average(np.abs(bin_vals_r[i])))
bias_r.append(np.average(bin_vals_r[i])) bias_r.append(np.average(bin_vals_r[i]))
std_r.append(np.std(bin_vals_r[i]))
mad_g.append(np.average(np.abs(bin_vals_g[i]))) mad_g.append(np.average(np.abs(bin_vals_g[i])))
bias_g.append(np.average(bin_vals_g[i])) bias_g.append(np.average(bin_vals_g[i]))
std_g.append(np.std(bin_vals_g[i]))
mad.append(np.average(np.abs(bin_vals[i]))) mad.append(np.average(np.abs(bin_vals[i])))
bias.append(np.average(bin_vals[i])) bias.append(np.average(bin_vals[i]))
std.append(np.std(bin_vals[i]))
do_plot(x_values, [mad_r, mad_g, mad], ['THIN', 'THICK', 'ALL'], ['blue', 'red', 'black'], title='ACHA - RAOB PRES MATCH', x_axis_label='MAD (m/s)', y_axis_label='hPa', invert=True, flip=True) do_plot(x_values, [std_r, std_g, std], ['THIN', 'THICK', 'ALL'], ['blue', 'red', 'black'], title='ACHA - RAOB Pres Match', x_axis_label='STD (hPa)', y_axis_label='hPa', invert=True, flip=True)
#do_plot(x_values, [std_r, std_g, std], ['THIN', 'THICK', 'ALL'], ['blue', 'red', 'black'], title='ACHA - RAOB Pres Match', x_axis_label='STD (deg)', y_axis_label='hPa', invert=True, flip=True)
#do_plot(x_values, [mad_r, mad_g, mad], ['THIN', 'THICK', 'ALL'], ['blue', 'red', 'black'], title='ACHA - RAOB Pres Match', x_axis_label='MAD (deg)', y_axis_label='hPa', invert=True, flip=True)
#do_plot(x_values, [mad_r, mad_g, mad], ['THIN', 'THICK', 'ALL'], ['blue', 'red', 'black'], title='ACHA - BestFit Full Domain (GFS)', x_axis_label='MAD', y_axis_label='hPa', invert=True, flip=True) #do_plot(x_values, [mad_r, mad_g, mad], ['THIN', 'THICK', 'ALL'], ['blue', 'red', 'black'], title='ACHA - BestFit Full Domain (GFS)', x_axis_label='MAD', y_axis_label='hPa', invert=True, flip=True)
#do_plot(x_values, [pres_mad_r, pres_mad_g], ['RAOB', 'GFS'], ['blue', 'red'], title='ACHA - BestFit', x_axis_label='MAD', y_axis_label='hPa', invert=True, flip=True) #do_plot(x_values, [pres_mad_r, pres_mad_g], ['RAOB', 'GFS'], ['blue', 'red'], title='ACHA - BestFit', x_axis_label='MAD', y_axis_label='hPa', invert=True, flip=True)
#do_plot(x_values, [spd_mad_r, spd_mad_g], ['RAOB', 'GFS'], ['blue', 'red'], title='ACHA - BestFit', x_axis_label='MAE (m/s)', y_axis_label='hPa', invert=True, flip=True) #do_plot(x_values, [spd_mad_r, spd_mad_g], ['RAOB', 'GFS'], ['blue', 'red'], title='ACHA - BestFit', x_axis_label='MAE (m/s)', y_axis_label='hPa', invert=True, flip=True)
#do_plot(x_values, [pres_bias_r, pres_bias_g], ['RAOB', 'GFS'], ['blue', 'red'], title='ACHA - BestFit', x_axis_label='BIAS', y_axis_label='hPa', invert=True, flip=True) #do_plot(x_values, [pres_bias_r, pres_bias_g], ['RAOB', 'GFS'], ['blue', 'red'], title='ACHA - BestFit', x_axis_label='BIAS', y_axis_label='hPa', invert=True, flip=True)
#do_plot(x_values, [spd_bias_r, spd_bias_g], ['RAOB', 'GFS'], ['blue', 'red'], title='ACHA - BestFit', x_axis_label='BIAS (m/s)', y_axis_label='hPa', invert=True, flip=True) #do_plot(x_values, [spd_bias_r, spd_bias_g], ['RAOB', 'GFS'], ['blue', 'red'], title='ACHA - BestFit', x_axis_label='BIAS (m/s)', y_axis_label='hPa', invert=True, flip=True)
#do_plot(x_values, [num_pres_r, num_pres_g], ['RAOB:'+str(num_r), 'GFS:'+str(num_g)], ['blue', 'red'], x_axis_label='Normalized Count', y_axis_label='hPa', invert=True, flip=True) #do_plot(x_values, [num_vals_r, num_vals_g, num_vals], ['THIN: '+str(num_r), 'THICK: '+str(num_g), 'ALL: '+str(num)], ['blue', 'red', 'black'], title='ACHA - RAOB PRES MATCH', x_axis_label='log(Count)', y_axis_label='hPa', invert=True, flip=True)
def make_plot2(bin_pres_r, bin_ranges): def make_plot2(bin_pres_r, bin_ranges):
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment