Skip to content
Snippets Groups Projects
Commit 2f2f044b authored by tomrink's avatar tomrink
Browse files

snapshot...

parent 823df891
No related branches found
No related tags found
No related merge requests found
......@@ -25,40 +25,40 @@ def keep_tile(param, param_s, tile):
grd_k = tile[k, ].copy()
if target_param == 'cloud_probability':
grd_k = process_cld_prob_(grd_k)
grd_k, bflag = process_cld_prob_(grd_k)
elif target_param == 'cld_opd_dcomp':
grd_k = process_cld_opd_(grd_k)
grd_k, bflag = process_cld_opd_(grd_k)
if grd_k is not None:
tile[k, ] = grd_k
return tile
return tile, bflag
else:
return None
return None, bflag
def process_cld_prob_(grd_k):
keep = np.invert(np.isnan(grd_k))
num_keep = np.sum(keep)
if num_keep / grd_k.size < 0.98:
return None
return None, True
keep_clr = np.where(keep, grd_k < 0.20, False)
frac_keep = np.sum(keep_clr)/num_keep
if not (0.38 < frac_keep < 0.62):
return None
if not (0.40 < frac_keep < 0.60):
return None, False
grd_k = np.where(np.invert(keep), 0, grd_k) # Convert NaNs to 0
return grd_k
return grd_k, False
def process_cld_opd_(grd_k):
keep = np.invert(np.isnan(grd_k))
num_keep = np.sum(keep)
if num_keep / grd_k.size < 0.98:
return None
return None, True
grd_k = np.where(np.invert(keep), 0, grd_k)
keep = np.where(keep, np.logical_and(0.1 < grd_k, grd_k < 158.0), False)
if np.sum(keep)/num_keep < 0.50:
return None
return grd_k
return None, False
return grd_k, False
def run_all(directory, out_directory, day_night='ANY', pattern='clavrx_*.nc', start=10):
......@@ -80,6 +80,8 @@ def run_all(directory, out_directory, day_night='ANY', pattern='clavrx_*.nc', st
num_files = len(data_files)
print('Start, number of files: ', num_files)
total_num_not_missing = 0
for idx, data_f in enumerate(data_files):
# if idx % 4 == 0: # if we want to skip some files
if True:
......@@ -90,9 +92,9 @@ def run_all(directory, out_directory, day_night='ANY', pattern='clavrx_*.nc', st
continue
try:
run(h5f, data_params, data_train_tiles, data_valid_tiles,
label_params, label_train_tiles, label_valid_tiles,
num_keep_x_tiles=num_keep_x_tiles, tile_width=64, kernel_size=7, day_night=day_night)
num_not_missing = run(h5f, data_params, data_train_tiles, data_valid_tiles,
label_params, label_train_tiles, label_valid_tiles,
num_keep_x_tiles=num_keep_x_tiles, tile_width=64, kernel_size=7, day_night=day_night)
except Exception as e:
print(e)
h5f.close()
......@@ -129,7 +131,9 @@ def run_all(directory, out_directory, day_night='ANY', pattern='clavrx_*.nc', st
print(' num_train_samples, num_valid_samples, progress % : ', num_train_samples, num_valid_samples, int((f_cnt/num_files)*100))
total_num_train_samples += num_train_samples
total_num_valid_samples += num_valid_samples
print('total_num_train_samples, total_num_valid_samples: ', total_num_train_samples, total_num_valid_samples)
total_num_not_missing += num_not_missing
print('total_num_train_samples, total_num_valid_samples, total_num_not_missing: ', total_num_train_samples,
total_num_valid_samples, total_num_not_missing)
print('--------------------------------------------------')
cnt += 1
......@@ -179,12 +183,13 @@ def run(h5f, param_s, train_tiles, valid_tiles, lbl_param_s, lbl_train_tiles, lb
i_start = int(num_pixels / 2) - int((num_keep_x_tiles * tile_width) / 2)
j_start = 0
num_keep_y_tiles = int(num_lines / tile_width) - 3
num_y_tiles = int(num_lines / tile_width) - 1
num_y_valid = int(num_keep_y_tiles * 0.15) + 1
num_y_train = num_keep_y_tiles - num_y_valid - 1
data_tiles = []
lbl_tiles = []
num_not_missing = 0
for j in range(num_y_train):
for j in range(num_y_tiles):
j_a = j_start + j * j_skip
j_b = j_a + tile_width
......@@ -199,31 +204,23 @@ def run(h5f, param_s, train_tiles, valid_tiles, lbl_param_s, lbl_train_tiles, lb
nda = data[:, j_a:j_b, i_a:i_b]
nda_lbl = label[:, j_a*2:j_b*2, i_a*2:i_b*2]
nda_lbl = keep_tile(group_name_i+target_param, lbl_param_s, nda_lbl)
nda_lbl, missing_flag = keep_tile(group_name_i+target_param, lbl_param_s, nda_lbl)
if not missing_flag:
num_not_missing += 1
if nda_lbl is not None:
train_tiles.append(nda)
lbl_train_tiles.append(nda_lbl)
j_start = num_y_train * tile_width + 2*tile_width
for j in range(num_y_valid):
j_a = j_start + j * j_skip
j_b = j_a + tile_width
data_tiles.append(nda)
lbl_tiles.append(nda_lbl)
for i in range(num_keep_x_tiles):
i_a = i_start + i * i_skip
i_b = i_a + tile_width
num_tiles = len(lbl_tiles)
num_valid = int(num_tiles * 0.10)
num_train = num_tiles - num_valid
if day_night == 'DAY' and not is_day(solzen[j_a:j_b, i_a:i_b]):
continue
elif day_night == 'NIGHT' and is_day(solzen[j_a:j_b, i_a:i_b]):
continue
nda = data[:, j_a:j_b, i_a:i_b]
nda_lbl = label[:, j_a * 2:j_b * 2, i_a * 2:i_b * 2]
nda_lbl = keep_tile(group_name_i+target_param, lbl_param_s, nda_lbl)
if nda_lbl is not None:
valid_tiles.append(nda)
lbl_valid_tiles.append(nda_lbl)
for k in range(num_train):
train_tiles.append(data_tiles[k])
lbl_train_tiles.append(lbl_tiles[k])
for k in range(num_valid):
valid_tiles.append(data_tiles[num_train + k])
lbl_valid_tiles.append(lbl_tiles[num_train + k])
return num_not_missing
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment