Skip to content
Snippets Groups Projects
Commit 2d10ced3 authored by tomrink's avatar tomrink
Browse files

snapshot...

parent 823d1c3b
No related branches found
No related tags found
No related merge requests found
...@@ -1126,7 +1126,7 @@ def box_extract(outfile='/home/rink/box_out.h5', train_params=train_params_day): ...@@ -1126,7 +1126,7 @@ def box_extract(outfile='/home/rink/box_out.h5', train_params=train_params_day):
h5f_expl.close() h5f_expl.close()
def run_mean_std(): def run_mean_std(check_cloudy=False):
ds_list = ['cld_height_acha', 'cld_geo_thick', 'cld_press_acha', ds_list = ['cld_height_acha', 'cld_geo_thick', 'cld_press_acha',
'supercooled_cloud_fraction', 'cld_temp_acha', 'cld_opd_acha', 'supercooled_cloud_fraction', 'cld_temp_acha', 'cld_opd_acha',
'cld_reff_acha', 'cld_reff_dcomp', 'cld_reff_dcomp_1', 'cld_reff_dcomp_2', 'cld_reff_dcomp_3', 'cld_reff_acha', 'cld_reff_dcomp', 'cld_reff_dcomp_1', 'cld_reff_dcomp_2', 'cld_reff_dcomp_3',
...@@ -1142,6 +1142,16 @@ def run_mean_std(): ...@@ -1142,6 +1142,16 @@ def run_mean_std():
ice_h5f_lst = [h5py.File(f, 'r') for f in ice_flist] ice_h5f_lst = [h5py.File(f, 'r') for f in ice_flist]
no_ice_h5f_lst = [h5py.File(f, 'r') for f in no_ice_flist] no_ice_h5f_lst = [h5py.File(f, 'r') for f in no_ice_flist]
if check_cloudy:
cld_msk_i = []
cld_msk_ni = []
for idx, ice_h5f in enumerate(ice_h5f_lst):
no_ice_h5f = no_ice_h5f_lst[idx]
cld_msk_i.append(ice_h5f['cloud_mask'][:,].flatten())
cld_msk_ni.append(no_ice_h5f['cloud_mask'][:,].flatten())
cld_msk_i = np.concatenate(cld_msk_i)
cld_msk_ni = np.concatenate(cld_msk_ni)
for dname in ds_list: for dname in ds_list:
data = [] data = []
data_i = [] data_i = []
...@@ -1160,11 +1170,19 @@ def run_mean_std(): ...@@ -1160,11 +1170,19 @@ def run_mean_std():
std = np.nanstd(data) std = np.nanstd(data)
data_i = np.concatenate(data_i) data_i = np.concatenate(data_i)
if check_cloudy:
keep = np.logical_or(cld_msk_i == 2, cld_msk_i == 3)
data_i = data_i[keep]
print('ice: ', data_i.shape)
mean_i = np.nanmean(data_i) mean_i = np.nanmean(data_i)
data_i -= mean_i data_i -= mean_i
std_i = np.nanstd(data_i) std_i = np.nanstd(data_i)
data_ni = np.concatenate(data_ni) data_ni = np.concatenate(data_ni)
if check_cloudy:
keep = np.logical_or(cld_msk_ni == 2, cld_msk_ni == 3)
data_ni = data_ni[keep]
print('no ice: ', data_ni.shape)
mean_ni = np.nanmean(data_ni) mean_ni = np.nanmean(data_ni)
data_ni -= mean_ni data_ni -= mean_ni
std_ni = np.nanstd(data_ni) std_ni = np.nanstd(data_ni)
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment