Skip to content
Snippets Groups Projects
Commit 1ed2d21e authored by tomrink's avatar tomrink
Browse files

snapshot...

parent 11bd6cf9
No related branches found
No related tags found
No related merge requests found
......@@ -14,7 +14,7 @@ import h5py
LOG_DEVICE_PLACEMENT = False
PROC_BATCH_SIZE = 50
PROC_BATCH_SIZE = 10
PROC_BATCH_BUFFER_SIZE = 50000
NumClasses = 2
......@@ -189,9 +189,11 @@ class UNET:
label_s.append(nda)
data = np.concatenate(data_s)
data = data[:, 0, :, :]
data = np.expand_dims(data, axis=3)
label = np.concatenate(label_s)
label = label[:, 0, :, :]
label = np.expand_dims(label, axis=3)
data = data.astype(np.float32)
......@@ -490,6 +492,68 @@ class UNET:
print(self.logits.shape)
def build_upsample(self):
print('build_upsample')
# padding = "VALID"
padding = "SAME"
# activation = tf.nn.relu
# activation = tf.nn.elu
activation = tf.nn.leaky_relu
num_filters = self.n_chans * 8
input_2d = self.inputs[0]
print('input: ', input_2d.shape)
# Expanding (Decoding) branch -------------------------------------------------------------------------------
print('expanding branch')
conv = tf.keras.layers.Conv2DTranspose(num_filters, kernel_size=7, strides=2, padding=padding, activation=activation)(input_2d)
conv = tf.keras.layers.BatchNormalization()(conv)
print(conv.shape)
conv = conv[:, 18:146, 18:146, :]
num_filters /= 2
conv = tf.keras.layers.Conv2DTranspose(num_filters, kernel_size=1, strides=1, padding=padding, activation=activation)(conv)
print(conv.shape)
num_filters /= 2
conv = tf.keras.layers.Conv2DTranspose(num_filters, kernel_size=1, strides=1, padding=padding, activation=activation)(conv)
print(conv.shape)
# if NumClasses == 2:
# activation = tf.nn.sigmoid # For binary
# else:
# activation = tf.nn.softmax # For multi-class
activation = tf.nn.sigmoid
# Called logits, but these are actually probabilities, see activation
self.logits = tf.keras.layers.Conv2D(1, kernel_size=1, strides=1, padding=padding, name='probability', activation=activation)(conv)
print(self.logits.shape)
# num_filters /= 2
# conv = tf.keras.layers.Conv2DTranspose(num_filters, kernel_size=3, strides=2, padding=padding)(conv)
# conv = tf.keras.layers.concatenate([conv, conv_3])
# conv = tf.keras.layers.Conv2D(num_filters, kernel_size=3, strides=1, padding=padding, activation=activation)(conv)
# conv = tf.keras.layers.BatchNormalization()(conv)
# print('6: ', conv.shape)
#
# num_filters /= 2
# conv = tf.keras.layers.Conv2DTranspose(num_filters, kernel_size=3, strides=2, padding=padding)(conv)
# conv = tf.keras.layers.concatenate([conv, conv_2])
# conv = tf.keras.layers.Conv2D(num_filters, kernel_size=3, strides=1, padding=padding, activation=activation)(conv)
# conv = tf.keras.layers.BatchNormalization()(conv)
# print('7: ', conv.shape)
#
# num_filters /= 2
# conv = tf.keras.layers.Conv2DTranspose(num_filters, kernel_size=3, strides=2, padding=padding)(conv)
# print('8: ', conv.shape)
#
# conv = tf.keras.layers.Conv2DTranspose(num_filters, kernel_size=3, strides=2, padding=padding)(conv)
# print('9: ', conv.shape)
def build_training(self):
# if NumClasses == 2:
# self.loss = tf.keras.losses.BinaryCrossentropy(from_logits=False) # for two-class only
......@@ -770,7 +834,8 @@ class UNET:
# f.close()
def build_model(self):
self.build_unet()
# self.build_unet()
self.build_upsample()
self.model = tf.keras.Model(self.inputs, self.logits)
def restore(self, ckpt_dir):
......@@ -826,9 +891,17 @@ class UNET:
self.test_preds = preds
def run(self, directory):
data_files = glob.glob(directory+'mod_res*.npy')
label_files = [f.replace('mod', 'img') for f in data_files]
self.setup_pipeline(data_files, label_files)
train_data_files = glob.glob(directory+'data_train*.npy')
valid_data_files = glob.glob(directory+'data_valid*.npy')
train_label_files = glob.glob(directory+'label_train*.npy')
valid_label_files = glob.glob(directory+'label_valid*.npy')
train_data_files.sort()
valid_data_files.sort()
train_label_files.sort()
valid_label_files.sort()
self.setup_pipeline(train_data_files, train_label_files, valid_data_files, valid_label_files, 100000)
self.build_model()
self.build_training()
self.build_evaluation()
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment