Skip to content
Snippets Groups Projects
Commit 1ebee4d7 authored by tomrink's avatar tomrink
Browse files

snapshot...

parent d26e0dca
No related branches found
No related tags found
No related merge requests found
...@@ -370,7 +370,7 @@ class ESPCN: ...@@ -370,7 +370,7 @@ class ESPCN:
activation = tf.nn.leaky_relu activation = tf.nn.leaky_relu
momentum = 0.99 momentum = 0.99
num_filters = 64 num_filters = 32
input_2d = self.inputs[0] input_2d = self.inputs[0]
print('input: ', input_2d.shape) print('input: ', input_2d.shape)
...@@ -383,7 +383,7 @@ class ESPCN: ...@@ -383,7 +383,7 @@ class ESPCN:
conv = conv_b = tf.keras.layers.Conv2D(num_filters, kernel_size=3, padding=padding)(input_2d) conv = conv_b = tf.keras.layers.Conv2D(num_filters, kernel_size=3, padding=padding)(input_2d)
if NOISE_TRAINING: if NOISE_TRAINING:
conv = tf.keras.layers.GaussianNoise(stddev=NOISE_STDDEV)(conv) conv = conv_b = tf.keras.layers.GaussianNoise(stddev=NOISE_STDDEV)(conv)
conv_b = build_conv2d_block(conv_b, num_filters, 'Residual_Block_1') conv_b = build_conv2d_block(conv_b, num_filters, 'Residual_Block_1')
...@@ -391,13 +391,15 @@ class ESPCN: ...@@ -391,13 +391,15 @@ class ESPCN:
conv_b = build_conv2d_block(conv_b, num_filters, 'Residual_Block_3') conv_b = build_conv2d_block(conv_b, num_filters, 'Residual_Block_3')
conv_b = tf.keras.layers.Conv2D(num_filters // 2, kernel_size=3, strides=1, padding=padding)(conv_b) conv_b = build_conv2d_block(conv_b, num_filters, 'Residual_Block_4')
conv_b = tf.keras.layers.Conv2D(num_filters, kernel_size=3, strides=1, padding=padding)(conv_b)
conv = conv + conv_b conv = conv + conv_b
print(conv.shape) print(conv.shape)
# conv = tf.keras.layers.Conv2D(num_filters * (factor ** 2), 3, padding='same')(conv) conv = tf.keras.layers.Conv2D(num_filters * (factor ** 2), 3, padding='same')(conv)
conv = tf.keras.layers.Conv2D((factor ** 2), 3, padding='same')(conv) # conv = tf.keras.layers.Conv2D((factor ** 2), 3, padding='same')(conv)
print(conv.shape) print(conv.shape)
conv = tf.nn.depth_to_space(conv, factor) conv = tf.nn.depth_to_space(conv, factor)
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment