Skip to content
Snippets Groups Projects
Commit 0f57179c authored by tomrink's avatar tomrink
Browse files

snapshot...

parent 570d5571
No related branches found
No related tags found
No related merge requests found
......@@ -210,7 +210,7 @@ class SRCNN:
self.test_label_files = None
# self.n_chans = len(data_params_half) + len(data_params_full) + 1
self.n_chans = 3
self.n_chans = 5
self.X_img = tf.keras.Input(shape=(None, None, self.n_chans))
......@@ -270,10 +270,11 @@ class SRCNN:
tmp = normalize(tmp, param, mean_std_dct)
data_norm.append(tmp)
tmp = input_label[:, label_idx_i, :, :]
tmp = np.where(np.isnan(tmp), 0, tmp)
tmp = normalize(tmp, 'refl_0_65um_nom', mean_std_dct)
data_norm.append(tmp[:, self.slc_y, self.slc_x])
# High res refectance ----------
# tmp = input_label[:, label_idx_i, :, :]
# tmp = np.where(np.isnan(tmp), 0, tmp)
# tmp = normalize(tmp, 'refl_0_65um_nom', mean_std_dct)
# data_norm.append(tmp[:, self.slc_y, self.slc_x])
tmp = input_label[:, label_idx_i, :, :]
tmp = tmp.copy()
......@@ -297,16 +298,16 @@ class SRCNN:
# tmp = np.where(np.isnan(tmp), 0.0, tmp)
# data_norm.append(tmp)
# for param in sub_fields:
# idx = params.index(param)
# tmp = input_data[:, idx, :, :]
# tmp = upsample_nearest(tmp)
# tmp = tmp[:, self.slc_y, self.slc_x]
# if param != 'refl_substddev_ch01':
# tmp = normalize(tmp, 'refl_0_65um_nom', mean_std_dct)
# else:
# tmp = np.where(np.isnan(tmp), 0, tmp)
# data_norm.append(tmp)
for param in sub_fields:
idx = params.index(param)
tmp = input_data[:, idx, :, :]
tmp = upsample_nearest(tmp)
tmp = tmp[:, self.slc_y, self.slc_x]
if param != 'refl_substddev_ch01':
tmp = normalize(tmp, 'refl_0_65um_nom', mean_std_dct)
else:
tmp = np.where(np.isnan(tmp), 0, tmp)
data_norm.append(tmp)
# ---------------------------------------------------
data = np.stack(data_norm, axis=3)
......@@ -454,7 +455,7 @@ class SRCNN:
self.loss = tf.keras.losses.MeanSquaredError() # Regression
# decayed_learning_rate = learning_rate * decay_rate ^ (global_step / decay_steps)
initial_learning_rate = 0.002
initial_learning_rate = 0.001
decay_rate = 0.95
steps_per_epoch = int(self.num_data_samples/BATCH_SIZE) # one epoch
decay_steps = int(steps_per_epoch) * 4
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment