Skip to content
Snippets Groups Projects
Commit 0617bd07 authored by tomrink's avatar tomrink
Browse files

new method

parent 564b1dfb
No related branches found
No related tags found
No related merge requests found
......@@ -38,19 +38,19 @@ NOISE_TRAINING = False
img_width = 16
# mean_std_file = homedir+'data/icing/mean_std_no_ice.pkl'
mean_std_file = homedir+'data/icing/mean_std_l1b_no_ice.pkl'
mean_std_file = homedir+'data/icing/mean_std_no_ice.pkl'
# mean_std_file = homedir+'data/icing/mean_std_l1b_no_ice.pkl'
f = open(mean_std_file, 'rb')
mean_std_dct = pickle.load(f)
f.close()
# train_params = ['cld_height_acha', 'cld_geo_thick', 'supercooled_cloud_fraction', 'cld_temp_acha', 'cld_press_acha',
# 'cld_reff_acha', 'cld_opd_acha', 'conv_cloud_fraction', 'cld_emiss_acha']
# train_params = ['cld_height_acha', 'cld_geo_thick', 'supercooled_cloud_fraction', 'cld_temp_acha', 'cld_press_acha',
# 'cld_reff_dcomp', 'cld_opd_dcomp', 'cld_cwp_dcomp', 'iwc_dcomp', 'lwc_dcomp', 'conv_cloud_fraction', 'cld_emiss_acha']
train_params = ['temp_10_4um_nom', 'temp_11_0um_nom', 'temp_12_0um_nom', 'temp_13_3um_nom', 'temp_3_75um_nom',
'temp_6_2um_nom', 'temp_6_7um_nom', 'temp_7_3um_nom', 'temp_8_5um_nom', 'temp_9_7um_nom',
'refl_0_47um_nom', 'refl_0_65um_nom', 'refl_0_86um_nom', 'refl_1_38um_nom', 'refl_1_60um_nom']
train_params = ['cld_height_acha', 'cld_geo_thick', 'supercooled_cloud_fraction', 'cld_temp_acha', 'cld_press_acha',
'cld_reff_dcomp', 'cld_opd_dcomp', 'cld_cwp_dcomp', 'iwc_dcomp', 'lwc_dcomp', 'conv_cloud_fraction', 'cld_emiss_acha']
# train_params = ['temp_10_4um_nom', 'temp_11_0um_nom', 'temp_12_0um_nom', 'temp_13_3um_nom', 'temp_3_75um_nom',
# 'temp_6_2um_nom', 'temp_6_7um_nom', 'temp_7_3um_nom', 'temp_8_5um_nom', 'temp_9_7um_nom',
# 'refl_0_47um_nom', 'refl_0_65um_nom', 'refl_0_86um_nom', 'refl_1_38um_nom', 'refl_1_60um_nom']
# train_params = ['temp_10_4um_nom', 'temp_11_0um_nom', 'temp_12_0um_nom', 'temp_13_3um_nom', 'temp_3_75um_nom',
# 'temp_6_2um_nom', 'temp_6_7um_nom', 'temp_7_3um_nom', 'temp_8_5um_nom', 'temp_9_7um_nom']
......@@ -418,8 +418,8 @@ class IcingIntensityNN:
activation = tf.nn.leaky_relu
momentum = 0.99
num_filters = 16
# num_filters = 12
# num_filters = 16
num_filters = 12
conv = tf.keras.layers.Conv2D(num_filters, 5, strides=[1, 1], padding=padding, activation=activation)(self.inputs[0])
conv = tf.keras.layers.MaxPool2D(padding=padding)(conv)
......@@ -803,7 +803,7 @@ class IcingIntensityNN:
self.h5f_tst.close()
def do_evaluate(self, ckpt_dir, ll, cc):
def do_evaluate(self, ckpt_dir, ll, cc, prob_thresh=0.5):
ckpt = tf.train.Checkpoint(step=tf.Variable(1), model=self.model)
ckpt_manager = tf.train.CheckpointManager(ckpt, ckpt_dir, max_to_keep=3)
......@@ -821,7 +821,7 @@ class IcingIntensityNN:
preds = np.concatenate(pred_s)
if NumClasses == 2:
preds = np.where(preds > 0.6, 1, 0)
preds = np.where(preds > prob_thresh, 1, 0)
else:
preds = np.argmax(preds, axis=1)
print(preds.shape[0], np.sum(preds == 1))
......@@ -871,6 +871,25 @@ class IcingIntensityNN:
return filename, ice_lons, ice_lats
def run_restore_static(filename_tst, ckpt_dir_s):
cm_s = []
for ckpt_dir in ckpt_dir_s:
nn = IcingIntensityNN()
nn.run_restore(filename_tst, ckpt_dir)
cm_s.append(tf.math.confusion_matrix(nn.test_labels, nn.test_preds))
num = len(cm_s)
cm_avg = cm_s[0]
for k in range(num-1):
cm_avg += cm_s[k+1]
cm_avg /= num
return cm_avg
def run_evaluate_static(filename, ckpt_dir_s):
nn = IcingIntensityNN()
if __name__ == "__main__":
nn = IcingIntensityNN()
nn.run('matchup_filename')
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment