Skip to content
Snippets Groups Projects
Commit 03748735 authored by tomrink's avatar tomrink
Browse files

snapshot...

parent 2d856bb9
Branches
No related tags found
No related merge requests found
...@@ -40,7 +40,6 @@ def get_contrail_mask_image(image, thresh=0.157): ...@@ -40,7 +40,6 @@ def get_contrail_mask_image(image, thresh=0.157):
def extract(mask_image, image_ts, clavrx_path): def extract(mask_image, image_ts, clavrx_path):
gfs_file, _, _ = gfs_files.get_file(image_ts) gfs_file, _, _ = gfs_files.get_file(image_ts)
gfs_h5f = h5py.File(gfs_file, 'r')
xr_dataset = xr.open_dataset(gfs_file) xr_dataset = xr.open_dataset(gfs_file)
clvrx_h5f = h5py.File(clavrx_path, 'r') clvrx_h5f = h5py.File(clavrx_path, 'r')
...@@ -66,7 +65,36 @@ def extract(mask_image, image_ts, clavrx_path): ...@@ -66,7 +65,36 @@ def extract(mask_image, image_ts, clavrx_path):
contrail_lons = contrail_lons[keep] contrail_lons = contrail_lons[keep]
contrail_lats = contrail_lats[keep] contrail_lats = contrail_lats[keep]
wind = get_point_s(xr_dataset, ['u-wind','v-wind'], contrail_lons, contrail_lats, contrail_press) bins = np.arange(100, 1000, 100)
# Indexes of contrail_press for individual bins
binned_indexes = np.digitize(contrail_press, bins)
# Store the indexes in a dictionary where the key is the bin number and value is the list of indexes
bins_dict = {}
for bin_num in np.unique(binned_indexes):
bins_dict[bin_num] = np.where(binned_indexes == bin_num)[0]
# This does point by point computation of model parameters for each contrail pixel
voxel_dict = {key: [] for key in bins_dict.keys()}
for key in bins_dict.keys():
print('working on pressure level: ', bins[key])
for c_idx in bins_dict[key]:
lon = contrail_lons[c_idx]
lat = contrail_lats[c_idx]
press = contrail_press[c_idx]
wind_3d = get_voxel_s(xr_dataset, ['u-wind','v-wind'], lon, lat, press)
if wind_3d is not None:
voxel_dict[key].append(wind_3d)
# This section will compute model parameters in bulk for the region then pull for each contrail pixel
lon_range = [np.min(contrail_lons), np.max(contrail_lons)]
lat_range = [np.min(contrail_lats), np.max(contrail_lats)]
wind_3d = get_volume(xr_dataset, ['u-wind','v-wind'], lon_range=[lon_range[0], lon_range[1]], lat_range=[lat_range[0], lat_range[1]])
xr_dataset.close()
... ...
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please to comment