pirep_goes.py 20.19 KiB
from icing.pireps import pirep_icing
import numpy as np
import pickle
import os
from util.util import get_time_tuple_utc, GenericException, add_time_range_to_filename
from aeolus.datasource import CLAVRx, GOESL1B
from util.geos_nav import GEOSNavigation
import h5py
import re
import datetime
from datetime import timezone
goes_date_format = '%Y%j%H'
goes16_directory = '/arcdata/goes/grb/goes16' # /year/date/abi/L1b/RadC
#clavrx_dir = '/apollo/cloud/scratch/ICING/'
clavrx_dir = '/ships19/cloud/scratch/ICING/'
dir_fmt = '%Y_%m_%d_%j'
# dir_list = [f.path for f in os.scandir('.') if f.is_dir()]
ds_dct = {}
goes_ds_dct = {}
#pirep_file = '/home/rink/data/pireps/pireps_2019010000_2019063023.csv'
pirep_file = '/home/rink/data/pireps/pireps_20180101_20200331.csv'
l1b_ds_list = ['temp_10_4um_nom', 'temp_11_0um_nom', 'temp_12_0um_nom', 'temp_13_3um_nom', 'temp_3_75um_nom',
'temp_6_2um_nom', 'temp_6_7um_nom', 'temp_7_3um_nom', 'temp_8_5um_nom', 'temp_9_7um_nom',
'refl_0_47um_nom', 'refl_0_55um_nom', 'refl_0_65um_nom', 'refl_0_86um_nom', 'refl_1_38um_nom',
'refl_1_60um_nom']
l1b_ds_types = ['f4' for ds in l1b_ds_list]
ds_list = ['cld_height_acha', 'cld_geo_thick', 'cld_press_acha', 'sensor_zenith_angle', 'supercooled_prob_acha',
'supercooled_cloud_fraction', 'cld_temp_acha', 'cld_opd_acha', 'solar_zenith_angle',
'cld_reff_acha', 'cld_reff_dcomp', 'cld_reff_dcomp_1', 'cld_reff_dcomp_2', 'cld_reff_dcomp_3',
'cld_opd_dcomp', 'cld_opd_dcomp_1', 'cld_opd_dcomp_2', 'cld_opd_dcomp_3', 'cld_cwp_dcomp', 'iwc_dcomp',
'lwc_dcomp', 'cloud_type', 'cloud_phase', 'cloud_mask']
ds_types = ['f4' for i in range(21)] + ['i4' for i in range(3)]
a_clvr_file = '/home/rink/data/clavrx/clavrx_OR_ABI-L1b-RadC-M3C01_G16_s20190020002186.level2.nc'
def setup():
ice_dict, no_ice_dict, neg_ice_dict = pirep_icing(pirep_file)
return ice_dict, no_ice_dict, neg_ice_dict
def get_clavrx_datasource(timestamp):
dt_obj, time_tup = get_time_tuple_utc(timestamp)
date_dir_str = dt_obj.strftime(dir_fmt)
ds = ds_dct.get(date_dir_str)
if ds is None:
ds = CLAVRx(clavrx_dir + date_dir_str + '/')
ds_dct[date_dir_str] = ds
return ds
def get_goes_datasource(timestamp):
dt_obj, time_tup = get_time_tuple_utc(timestamp)
yr_dir = str(dt_obj.timetuple().tm_year)
date_dir = dt_obj.strftime(dir_fmt)
files_path = goes16_directory + '/' + yr_dir + '/' + date_dir + '/abi' + '/L1b' + '/RadC/'
ds = goes_ds_dct.get(date_dir)
if ds is None:
ds = GOESL1B(files_path)
goes_ds_dct[date_dir] = ds
return ds
def get_grid_values(h5f, grid_name, j_c, i_c, half_width, scale_factor_name='scale_factor', add_offset_name='add_offset'):
hfds = h5f[grid_name]
attrs = hfds.attrs
ylen, xlen = hfds.shape
j_l = j_c-half_width
i_l = i_c-half_width
if j_l < 0 or i_l < 0:
return None
j_r = j_c+half_width+1
i_r = i_c+half_width+1
if j_r >= ylen or i_r >= xlen:
return None
grd_vals = hfds[j_l:j_r, i_l:i_r]
grd_vals = np.where(grd_vals == -999, np.nan, grd_vals)
grd_vals = np.where(grd_vals == -32768, np.nan, grd_vals)
if attrs is None:
return grd_vals
if scale_factor_name is not None:
scale_factor = attrs.get(scale_factor_name)[0]
grd_vals = grd_vals * scale_factor
if add_offset_name is not None:
add_offset = attrs.get(add_offset_name)[0]
grd_vals = grd_vals + add_offset
return grd_vals
def create_file(filename, data_dct, ds_list, ds_types, lon_c, lat_c, time_s, fl_alt_s, icing_intensity, unq_ids):
h5f_expl = h5py.File(a_clvr_file, 'r')
h5f = h5py.File(filename, 'w')
for idx, ds_name in enumerate(ds_list):
data = data_dct[ds_name]
h5f.create_dataset(ds_name, data=data, dtype=ds_types[idx])
lon_ds = h5f.create_dataset('longitude', data=lon_c, dtype='f4')
lon_ds.dims[0].label = 'time'
lon_ds.attrs.create('units', data='degrees_east')
lon_ds.attrs.create('long_name', data='PIREP longitude')
lat_ds = h5f.create_dataset('latitude', data=lat_c, dtype='f4')
lat_ds.dims[0].label = 'time'
lat_ds.attrs.create('units', data='degrees_north')
lat_ds.attrs.create('long_name', data='PIREP latitude')
time_ds = h5f.create_dataset('time', data=time_s)
time_ds.dims[0].label = 'time'
time_ds.attrs.create('units', data='seconds since 1970-1-1 00:00:00')
time_ds.attrs.create('long_name', data='PIREP time')
ice_alt_ds = h5f.create_dataset('icing_altitude', data=fl_alt_s, dtype='f4')
ice_alt_ds.dims[0].label = 'time'
ice_alt_ds.attrs.create('units', data='m')
ice_alt_ds.attrs.create('long_name', data='PIREP altitude')
if icing_intensity is not None:
icing_int_ds = h5f.create_dataset('icing_intensity', data=icing_intensity, dtype='i4')
icing_int_ds.attrs.create('long_name', data='From PIREP. 0:No intensity report, 1:Trace, 2:Light, 3:Light Moderate, 4:Moderate, 5:Moderate Severe, 6:Severe')
unq_ids_ds = h5f.create_dataset('unique_id', data=unq_ids, dtype='i4')
unq_ids_ds.attrs.create('long_name', data='ID mapping to PIREP icing dictionary: see pireps.py')
# copy relevant attributes
for ds_name in ds_list:
h5f_ds = h5f[ds_name]
h5f_ds.attrs.create('standard_name', data=h5f_expl[ds_name].attrs.get('standard_name'))
h5f_ds.attrs.create('long_name', data=h5f_expl[ds_name].attrs.get('long_name'))
h5f_ds.attrs.create('units', data=h5f_expl[ds_name].attrs.get('units'))
h5f_ds.dims[0].label = 'time'
h5f_ds.dims[1].label = 'y'
h5f_ds.dims[2].label = 'x'
h5f.close()
h5f_expl.close()
def run(pirep_dct, outfile=None, outfile_l1b=None, dt_str_start=None, dt_str_end=None, reduce=False):
time_keys = list(pirep_dct.keys())
l1b_grd_dct = {name: [] for name in l1b_ds_list}
ds_grd_dct = {name: [] for name in ds_list}
t_start = None
t_end = None
if (dt_str_start is not None) and (dt_str_end is not None):
dto = datetime.datetime.strptime(dt_str_start, '%Y-%m-%d_%H:%M').replace(tzinfo=timezone.utc)
dto.replace(tzinfo=timezone.utc)
t_start = dto.timestamp()
dto = datetime.datetime.strptime(dt_str_end, '%Y-%m-%d_%H:%M').replace(tzinfo=timezone.utc)
dto.replace(tzinfo=timezone.utc)
t_end = dto.timestamp()
nav = GEOSNavigation(sub_lon=-75.0, CFAC=5.6E-05, COFF=-0.101332, LFAC=-5.6E-05, LOFF=0.128212, num_elems=2500, num_lines=1500)
lon_s = np.zeros(1)
lat_s = np.zeros(1)
last_clvr_file = None
last_h5f = None
lon_c = []
lat_c = []
time_s = []
fl_alt_s = []
ice_int_s = []
unq_ids = []
for idx, time in enumerate(time_keys):
if t_start is not None:
if time < t_start:
continue
if time > t_end:
continue
dt_obj, time_tup = get_time_tuple_utc(time)
print(dt_obj)
try:
clvr_ds = get_clavrx_datasource(time)
except Exception:
continue
clvr_file = clvr_ds.get_file(time)[0]
if clvr_file is None:
continue
print(clvr_file, last_clvr_file)
if clvr_file != last_clvr_file:
try:
h5f = h5py.File(clvr_file, 'r')
except Exception:
if h5f is not None:
h5f.close()
print('Problem with file: ', clvr_file)
continue
if last_h5f is not None:
last_h5f.close()
last_h5f = h5f
last_clvr_file = clvr_file
print('new file')
else:
h5f = last_h5f
reports = pirep_dct[time]
for tup in reports:
lat, lon, fl, I, id, rpt_str = tup
lat_s[0] = lat
lon_s[0] = lon
# try:
# clvr_ds = get_clavrx_datasource(time)
# except Exception:
# continue
#
# clvr_file = clvr_ds.get_file(time)[0]
# if clvr_file is None:
# continue
#
# if clvr_file != last_clvr_file:
# try:
# h5f = h5py.File(clvr_file, 'r')
# except Exception:
# if h5f is not None:
# h5f.close()
# print('Problem with file: ', clvr_file)
# continue
# if last_h5f is not None:
# last_h5f.close()
# last_h5f = h5f
# last_clvr_file = clvr_file
# else:
# h5f = last_h5f
cc, ll = nav.earth_to_lc_s(lon_s, lat_s)
if cc[0] < 0:
continue
cnt_a = 0
for didx, ds_name in enumerate(ds_list):
gvals = get_grid_values(h5f, ds_name, ll[0], cc[0], 20)
if gvals is not None:
ds_grd_dct[ds_name].append(gvals)
cnt_a += 1
cnt_b = 0
for didx, ds_name in enumerate(l1b_ds_list):
gvals = get_grid_values(h5f, ds_name, ll[0], cc[0], 20)
if gvals is not None:
l1b_grd_dct[ds_name].append(gvals)
cnt_b += 1
if cnt_a > 0 and cnt_a != len(ds_list):
raise GenericException('weirdness')
if cnt_b > 0 and cnt_b != len(l1b_ds_list):
raise GenericException('weirdness')
if cnt_a == len(ds_list) and cnt_b == len(l1b_ds_list):
lon_c.append(lon_s[0])
lat_c.append(lat_s[0])
time_s.append(time)
fl_alt_s.append(fl)
ice_int_s.append(I)
unq_ids.append(id)
if reduce is True:
break
if len(time_s) == 0:
return
t_start = time_s[0]
t_end = time_s[len(time_s)-1]
data_dct = {}
for ds_name in ds_list:
data_dct[ds_name] = np.array(ds_grd_dct[ds_name])
lon_c = np.array(lon_c)
lat_c = np.array(lat_c)
time_s = np.array(time_s)
fl_alt_s = np.array(fl_alt_s)
ice_int_s = np.array(ice_int_s)
unq_ids = np.array(unq_ids)
if outfile is not None:
outfile = add_time_range_to_filename(outfile, t_start, t_end)
create_file(outfile, data_dct, ds_list, ds_types, lon_c, lat_c, time_s, fl_alt_s, ice_int_s, unq_ids)
data_dct = {}
for ds_name in l1b_ds_list:
data_dct[ds_name] = np.array(l1b_grd_dct[ds_name])
if outfile_l1b is not None:
outfile_l1b = add_time_range_to_filename(outfile_l1b, t_start, t_end)
create_file(outfile_l1b, data_dct, l1b_ds_list, l1b_ds_types, lon_c, lat_c, time_s, fl_alt_s, ice_int_s, unq_ids)
def analyze(ice_dct, no_ice_dct):
last_file = None
ice_files = []
ice_times = []
for ts in list(ice_dct.keys()):
try:
ds = get_goes_datasource(ts)
goes_file, t_0, _ = ds.get_file(ts)
if goes_file is not None and goes_file != last_file:
ice_files.append(goes_file)
ice_times.append(t_0)
last_file = goes_file
except Exception:
continue
last_file = None
no_ice_files = []
no_ice_times = []
for ts in list(no_ice_dct.keys()):
try:
ds = get_goes_datasource(ts)
goes_file, t_0, _ = ds.get_file(ts)
if goes_file is not None and goes_file != last_file:
no_ice_files.append(goes_file)
no_ice_times.append(t_0)
last_file = goes_file
except Exception:
continue
ice_times = np.array(ice_times)
no_ice_times = np.array(no_ice_times)
itrsct_vals, comm1, comm2 = np.intersect1d(no_ice_times, ice_times, return_indices=True)
ice_indexes = np.arange(len(ice_times))
ucomm2 = np.setxor1d(comm2, ice_indexes)
np.random.shuffle(ucomm2)
ucomm2 = ucomm2[0:8000]
files_comm = []
for i in comm2:
files_comm.append(ice_files[i])
files_extra = []
times_extra = []
for i in ucomm2:
files_extra.append(ice_files[i])
times_extra.append(ice_times[i])
files = files_comm + files_extra
times = itrsct_vals.tolist() + times_extra
times = np.array(times)
sidxs = np.argsort(times)
for i in sidxs:
filename = os.path.split(files[i])[1]
so = re.search('_s\\d{11}', filename)
dt_str = so.group()
print(dt_str[2:])
def process_1(ice_dct, no_ice_dct, neg_ice_dct):
new_ice_dct = {}
new_no_ice_dct = {}
new_neg_ice_dct = {}
last_file = None
ice_files_5_6 = []
ice_times_5_6 = []
ice_keys_5_6 = []
ice_files_1 = []
ice_times_1 = []
ice_keys_1 = []
ice_files_4 = []
ice_times_4 = []
ice_keys_4 = []
ice_files_3 = []
ice_times_3 = []
ice_keys_3 = []
ice_files_2 = []
ice_times_2 = []
ice_keys_2 = []
for ts in list(ice_dct.keys()):
try:
ds = get_goes_datasource(ts)
goes_file, t_0, _ = ds.get_file(ts)
if goes_file is not None and goes_file != last_file:
rpts = ice_dct[ts]
for tup in rpts:
if tup[3] == 5 or tup[3] == 6:
ice_files_5_6.append(goes_file)
ice_times_5_6.append(t_0)
ice_keys_5_6.append(ts)
elif tup[3] == 1:
ice_files_1.append(goes_file)
ice_times_1.append(t_0)
ice_keys_1.append(ts)
elif tup[3] == 4:
ice_files_4.append(goes_file)
ice_times_4.append(t_0)
ice_keys_4.append(ts)
elif tup[3] == 3:
ice_files_3.append(goes_file)
ice_times_3.append(t_0)
ice_keys_3.append(ts)
else:
ice_files_2.append(goes_file)
ice_times_2.append(t_0)
ice_keys_2.append(ts)
last_file = goes_file
except Exception:
continue
last_file = None
no_ice_files = []
no_ice_times = []
no_ice_keys = []
for ts in list(no_ice_dct.keys()):
try:
ds = get_goes_datasource(ts)
goes_file, t_0, _ = ds.get_file(ts)
if goes_file is not None and goes_file != last_file:
rpts = no_ice_dct[ts]
for tup in rpts:
no_ice_files.append(goes_file)
no_ice_times.append(t_0)
no_ice_keys.append(ts)
last_file = goes_file
except Exception:
continue
last_file = None
neg_ice_files = []
neg_ice_times = []
neg_ice_keys = []
for ts in list(neg_ice_dct.keys()):
try:
ds = get_goes_datasource(ts)
goes_file, t_0, _ = ds.get_file(ts)
if goes_file is not None and goes_file != last_file:
rpts = neg_ice_dct[ts]
for tup in rpts:
neg_ice_files.append(goes_file)
neg_ice_times.append(t_0)
neg_ice_keys.append(ts)
last_file = goes_file
except Exception:
continue
ice_times_5_6 = np.array(ice_times_5_6)
ice_keys_5_6 = np.array(ice_keys_5_6)
print('5_6: ', ice_times_5_6.shape)
ice_times_4 = np.array(ice_times_4)
ice_keys_4 = np.array(ice_keys_4)
print('4: ', ice_times_4.shape)
ice_times_3 = np.array(ice_times_3)
ice_keys_3 = np.array(ice_keys_3)
print('3: ', ice_times_3.shape)
ice_times_2 = np.array(ice_times_2)
ice_keys_2 = np.array(ice_keys_2)
print('2: ', ice_times_2.shape)
np.random.shuffle(ice_times_2)
np.random.shuffle(ice_keys_2)
ice_keys_2 = ice_keys_2[0:30000]
ice_times_1 = np.array(ice_times_1)
ice_keys_1 = np.array(ice_keys_1)
print('1: ', ice_times_1.shape)
ice_times = np.concatenate([ice_times_5_6, ice_times_1, ice_times_2, ice_times_3, ice_times_4])
ice_keys = np.concatenate([ice_keys_5_6, ice_keys_1, ice_keys_2, ice_keys_3, ice_keys_4])
uniq_sorted = np.unique(ice_times)
uniq_sorted_keys = np.unique(ice_keys)
print(ice_times.shape, uniq_sorted.shape)
print(ice_keys.shape, uniq_sorted_keys.shape)
uniq_sorted_keys = uniq_sorted_keys.tolist()
for key in uniq_sorted_keys:
new_ice_dct[key] = ice_dct[key]
no_ice_times = np.array(no_ice_times)
neg_ice_times = np.array(neg_ice_times)
print('no ice: ', no_ice_times.shape)
print('neg ice: ', neg_ice_times.shape)
no_ice_keys = np.array(no_ice_keys)
np.random.shuffle(no_ice_keys)
no_ice_keys = no_ice_keys[0:50000]
uniq_sorted_no_ice = np.unique(no_ice_keys)
print(no_ice_keys.shape, uniq_sorted_no_ice.shape)
uniq_sorted_no_ice = uniq_sorted_no_ice.tolist()
for key in uniq_sorted_no_ice:
new_no_ice_dct[key] = no_ice_dct[key]
neg_ice_keys = np.array(neg_ice_keys)
np.random.shuffle(neg_ice_keys)
neg_ice_keys = neg_ice_keys[0:5000]
uniq_sorted_neg_ice = np.unique(neg_ice_keys)
print(neg_ice_keys.shape, uniq_sorted_neg_ice.shape)
for key in uniq_sorted_neg_ice:
new_neg_ice_dct[key] = neg_ice_dct[key]
return new_ice_dct, new_no_ice_dct, new_neg_ice_dct
def run_qc(filename, filename_l1b):
f = h5py.File(filename, 'r')
icing_alt = f['icing_altitude'][:]
cld_top_hgt = f['cld_height_acha'][:, 10:30, 10:30]
cld_phase = f['cloud_phase'][:, 10:30, 10:30]
cld_opd = f['cld_opd_acha'][:, 10:30, 10:30]
cld_opd_dc = f['cld_opd_dcomp'][:, 10:30, 10:30]
cld_mask = f['cloud_mask'][:, 10:30, 10:30]
f_l1b = h5py.File(filename_l1b, 'r')
bt_11um = f_l1b['temp_11_0um_nom'][:, 10:30, 10:30]
print('num pireps: ', len(icing_alt))
mask = apply_qc_icing_pireps(icing_alt, cld_top_hgt, cld_phase, cld_opd, cld_mask, bt_11um)
f.close()
f_l1b.close()
bts = []
phs = []
opd = []
opd_dc = []
for i in range(len(mask)):
if (np.sum(mask[i]) / 400) > 0.20:
bts.append((bt_11um[i,].flatten())[mask[i]])
phs.append((cld_phase[i,].flatten())[mask[i]])
opd.append((cld_opd[i,].flatten())[mask[i]])
#opd_dc.append(cld_opd_dc[i,].flatten())[mask[i]]
#else:
# bts.append((bt_11um[i,].flatten())[mask[i]])
print('num valid pireps: ', len(bts))
bts = np.concatenate(bts)
phs = np.concatenate(phs)
opd = np.concatenate(opd)
#opd_dc = np.concatenate(opd_dc)
print(np.histogram(bts, bins=10))
print(np.histogram(opd, bins=10))
#print(np.histogram(opd_dc, bins=10))
print(np.histogram(phs, bins=6))
return mask
def apply_qc_icing_pireps(icing_alt, cld_top_hgt, cld_phase, cld_opd, cld_mask, bt_11um):
opd_threshold = 2
closeness = 100.0 # meters
num_obs = len(icing_alt)
cld_mask = cld_mask.reshape((num_obs, -1))
cld_top_hgt = cld_top_hgt.reshape((num_obs, -1))
cld_phase = cld_phase.reshape((num_obs, -1))
cld_opd = cld_opd.reshape((num_obs, -1))
bt_11um = bt_11um.reshape((num_obs, -1))
skip = True
mask = []
for i in range(num_obs):
keep_0 = np.logical_or(cld_mask[i,] == 2, cld_mask[i,] == 3) # cloudy
keep_1 = np.invert(np.isnan(cld_top_hgt[i,]))
keep_2 = np.invert(np.isnan(bt_11um[i,]))
keep_3 = np.invert(np.isnan(cld_opd[i,]))
keep = keep_0 & keep_1 & keep_2 & keep_3
if skip:
continue
keep = np.where(keep, cld_top_hgt[i,] > icing_alt[i], False)
keep = np.where(keep,
np.invert((cld_phase[i,] == 4) &
np.logical_and(cld_top_hgt[i,]+closeness > icing_alt[i], cld_top_hgt[i,]-closeness < icing_alt[i])),
False)
keep = np.where(keep, (cld_opd[i,] >= opd_threshold) & (cld_phase[i,] == 4) & (cld_top_hgt[i,] > icing_alt[i]), False)
keep = np.where(keep, np.invert((cld_phase[i,] == 4) & (cld_opd[i,] < 0.1) & (cld_top_hgt[i,] > icing_alt[i])), False)
keep = np.where(keep, np.invert(bt_11um[i,] > 270.0), False)
keep = np.where(keep, np.invert(bt_11um[i,] < 228.0), False)
mask.append(keep)
return mask