Skip to content
Snippets Groups Projects
Select Git revision
  • df637dad2f87f1220c5b2932392ecdfa75c327b7
  • master default protected
  • use_flight_altitude
  • distribute
4 results

cloudheight_mgpus.py

Blame
  • user avatar
    tomrink authored
    fc7b0c59
    History
    cloudheight_mgpus.py 31.93 KiB
    import tensorflow as tf
    from util.setup import logdir, modeldir, cachepath
    import subprocess
    
    import os, datetime
    import numpy as np
    import xarray as xr
    import pickle
    
    from deeplearning.amv_raob import get_bounding_gfs_files, convert_file, get_images, get_interpolated_profile, \
        split_matchup, shuffle_dict, get_interpolated_scalar, get_num_samples, get_time_tuple_utc, get_profile
    
    LOG_DEVICE_PLACEMENT = False
    
    CACHE_DATA_IN_MEM = True
    CACHE_GFS = True
    DISK_CACHE = True
    
    NumLabels = 1
    NUM_EPOCHS = 200
    
    PROC_BATCH_SIZE = 60
    BATCH_SIZE = 256  # Per replica
    BATCH_SIZE = BATCH_SIZE * 3
    
    PROC_BATCH_BUFFER_SIZE = 50000
    
    TRACK_MOVING_AVERAGE = False
    
    DAY_NIGHT = 'ANY'
    
    TRIPLET = False
    CONV3D = False
    
    abi_2km_channels = ['14', '08', '11', '13', '15', '16']
    # abi_2km_channels = ['08', '09', '10']
    abi_hkm_channels = []
    # abi_channels = abi_2km_channels + abi_hkm_channels
    abi_channels = abi_2km_channels
    
    abi_mean = {'08': 236.014, '14': 275.229, '02': 0.049, '11': 273.582, '13': 275.796, '15': 272.928, '16': 260.956, '09': 244.502, '10': 252.375}
    abi_std = {'08': 7.598, '14': 20.443, '02': 0.082, '11': 19.539, '13': 20.431, '15': 20.104, '16': 15.720, '09': 9.827, '10': 11.765}
    abi_valid_range = {'02': [0.001, 120], '08': [150, 350], '14': [150, 350], '11': [150, 350], '13': [150, 350], '15': [150, 350], '16': [150, 350], '09': [150, 350], '10': [150, 350]}
    abi_half_width = {'08': 12, '14': 12, '02': 48, '11': 12, '13': 12, '15': 12, '16': 12, '09': 12, '10': 12}
    #abi_half_width = {'08': 6, '14': 6, '02': 24, '11': 6, '13': 6, '15': 6, '16': 6, '09': 6, '10': 6}
    #abi_half_width = {'08': 3, '14': 3, '02': 12, '11': 3, '13': 3, '15': 3, '16': 3, '09': 3, '10': 3}
    abi_stride = {'08': 1, '14': 1, '02': 4, '11': 1, '13': 1, '15': 1, '16': 1, '09': 1, '10': 1}
    img_width = 24
    #img_width = 12
    #img_width = 6
    
    NUM_VERT_LEVELS = 26
    NUM_VERT_PARAMS = 2
    
    gfs_mean_temp = [225.481110,
                     218.950729,
                     215.830338,
                     212.063187,
                     209.348038,
                     208.787033,
                     213.728928,
                     218.298264,
                     223.061020,
                     229.190445,
                     236.095215,
                     242.589493,
                     248.333237,
                     253.357071,
                     257.768646,
                     261.599396,
                     264.793671,
                     267.667603,
                     270.408478,
                     272.841919,
                     274.929138,
                     276.826294,
                     277.786865,
                     278.834198,
                     279.980408,
                     281.308380]
    gfs_mean_temp = np.array(gfs_mean_temp)
    gfs_mean_temp = np.reshape(gfs_mean_temp, (1, gfs_mean_temp.shape[0]))
    
    gfs_std_temp = [13.037852,
                    11.669035,
                    10.775956,
                    10.428216,
                    11.705231,
                    12.352798,
                    8.892235,
                    7.101064,
                    8.505628,
                    10.815929,
                    12.139559,
                    12.720000,
                    12.929382,
                    13.023590,
                    13.135534,
                    13.543551,
                    14.449997,
                    15.241049,
                    15.638563,
                    15.943666,
                    16.178715,
                    16.458992,
                    16.700863,
                    17.109579,
                    17.630177,
                    18.080544]
    gfs_std_temp = np.array(gfs_std_temp)
    gfs_std_temp = np.reshape(gfs_std_temp, (1, gfs_std_temp.shape[0]))
    
    mean_std_dict = {'temperature': (gfs_mean_temp, gfs_std_temp), 'surface temperature': (279.35, 22.81),
                     'MSL pressure': (1010.64, 13.46), 'tropopause temperature': (208.17, 11.36), 'tropopause pressure': (219.62, 78.79)}
    
    valid_range_dict = {'temperature': (150, 350), 'surface temperature': (150, 350), 'MSL pressure': (800, 1050),
                        'tropopause temperature': (150, 250), 'tropopause pressure': (100, 500)}
    
    
    def build_residual_block(input, drop_rate, num_neurons, activation, block_name, doDropout=True, doBatchNorm=True):
        with tf.name_scope(block_name):
            if doDropout:
                fc = tf.keras.layers.Dropout(drop_rate)(input)
                fc = tf.keras.layers.Dense(num_neurons, activation=activation)(fc)
            else:
                fc = tf.keras.layers.Dense(num_neurons, activation=activation)(input)
            if doBatchNorm:
                fc = tf.keras.layers.BatchNormalization()(fc)
            print(fc.shape)
            fc_skip = fc
    
            if doDropout:
                fc = tf.keras.layers.Dropout(drop_rate)(fc)
            fc = tf.keras.layers.Dense(num_neurons, activation=activation)(fc)
            if doBatchNorm:
                fc = tf.keras.layers.BatchNormalization()(fc)
            print(fc.shape)
    
            if doDropout:
                fc = tf.keras.layers.Dropout(drop_rate)(fc)
            fc = tf.keras.layers.Dense(num_neurons, activation=activation)(fc)
            if doBatchNorm:
                fc = tf.keras.layers.BatchNormalization()(fc)
            print(fc.shape)
    
            if doDropout:
                fc = tf.keras.layers.Dropout(drop_rate)(fc)
            fc = tf.keras.layers.Dense(num_neurons, activation=None)(fc)
            if doBatchNorm:
                fc = tf.keras.layers.BatchNormalization()(fc)
    
            fc = fc + fc_skip
            fc = tf.keras.layers.LeakyReLU()(fc)
            print(fc.shape)
    
        return fc
    
    
    class CloudHeightNN:
        
        def __init__(self, gpu_device=0, datapath=None):
            self.train_data = None
            self.train_label = None
            self.test_data = None
            self.test_label = None
            self.test_data_denorm = None
            
            self.train_dataset = None
            self.inner_train_dataset = None
            self.test_dataset = None
            self.X_img = None
            self.X_prof = None
            self.X_u = None
            self.X_v = None
            self.X_sfc = None
            self.inputs = []
            self.y = None
            self.handle = None
            self.inner_handle = None
            self.in_mem_batch = None
            self.matchup_dict = None
    
            self.logits = None
    
            self.predict_data = None
            self.predict_dataset = None
            self.mean_list = None
            self.std_list = None
            
            self.training_op = None
            self.correct = None
            self.accuracy = None
            self.loss = None
            self.pred_class = None
            self.gpu_device = gpu_device
            self.variable_averages = None
    
            self.global_step = None
    
            self.writer_train = None
            self.writer_valid = None
    
            self.OUT_OF_RANGE = False
    
            self.abi = None
            self.temp = None
            self.wv = None
            self.lbfp = None
            self.sfc = None
    
            self.in_mem_data_cache = {}
    
            self.model = None
            self.optimizer = None
            self.train_loss = None
            self.train_accuracy = None
            self.test_loss = None
            self.test_accuracy = None
    
            self.accuracy_0 = None
            self.accuracy_1 = None
            self.accuracy_2 = None
            self.accuracy_3 = None
            self.accuracy_4 = None
            self.accuracy_5 = None
    
            self.num_0 = 0
            self.num_1 = 0
            self.num_2 = 0
            self.num_3 = 0
            self.num_4 = 0
            self.num_5 = 0
    
            self.learningRateSchedule = None
            self.num_data_samples = None
            self.initial_learning_rate = None
    
            n_chans = len(abi_channels)
            if TRIPLET:
                n_chans *= 3
            self.X_img = tf.keras.Input(shape=(img_width, img_width, n_chans))
            self.X_prof = tf.keras.Input(shape=(NUM_VERT_LEVELS, NUM_VERT_PARAMS))
            self.X_sfc = tf.keras.Input(shape=2)
    
            self.inputs.append(self.X_img)
            self.inputs.append(self.X_prof)
            self.inputs.append(self.X_sfc)
    
            if datapath is not None:
                self.DISK_CACHE = False
                f = open(datapath, 'rb')
                self.in_mem_data_cache = pickle.load(f)
                f.close()
    
            tf.debugging.set_log_device_placement(LOG_DEVICE_PLACEMENT)
    
            gpus = tf.config.experimental.list_physical_devices('GPU')
            if gpus:
                try:
                    # Currently, memory growth needs to be the same across GPUs
                    for gpu in gpus:
                        tf.config.experimental.set_memory_growth(gpu, True)
                    logical_gpus = tf.config.experimental.list_logical_devices('GPU')
                    print(len(gpus), "Physical GPUs,", len(logical_gpus), "Logical GPUs")
                except RuntimeError as e:
                    # Memory growth must be set before GPUs have been initialized
                    print(e)
    
            self.strategy = tf.distribute.MirroredStrategy()
    
        def get_in_mem_data_batch(self, time_keys):
            images = []
            vprof = []
            label = []
            sfc = []
    
            for key in time_keys:
                if CACHE_DATA_IN_MEM:
                    tup = self.in_mem_data_cache.get(key)
                    if tup is not None:
                        images.append(tup[0])
                        vprof.append(tup[1])
                        label.append(tup[2])
                        sfc.append(tup[3])
                        continue
    
                obs = self.matchup_dict.get(key)
                if obs is None:
                    print('no entry for: ', key)
                timestamp = obs[0][0]
                print('not found in cache, processing key: ', key, get_time_tuple_utc(timestamp)[0])
    
                gfs_0, time_0, gfs_1, time_1 = get_bounding_gfs_files(timestamp)
                if (gfs_0 is None) and (gfs_1 is None):
                    print('no GFS for: ', get_time_tuple_utc(timestamp)[0])
                    continue
                try:
                    gfs_0 = convert_file(gfs_0)
                    if gfs_1 is not None:
                        gfs_1 = convert_file(gfs_1)
                except Exception as exc:
                    print(get_time_tuple_utc(timestamp)[0])
                    print(exc)
                    continue
    
                ds_1 = None
                try:
                    ds_0 = xr.open_dataset(gfs_0)
                    if gfs_1 is not None:
                        ds_1 = xr.open_dataset(gfs_1)
                except Exception as exc:
                    print(exc)
                    continue
    
                lons = obs[:, 2]
                lats = obs[:, 1]
    
                half_width = [abi_half_width.get(ch) for ch in abi_2km_channels]
                strides = [abi_stride.get(ch) for ch in abi_2km_channels]
    
                img_a_s, img_a_s_l, img_a_s_r, idxs_a = get_images(lons, lats, timestamp, abi_2km_channels, half_width, strides, do_norm=True, daynight=DAY_NIGHT)
                if idxs_a.size == 0:
                    print('no images for: ', timestamp)
                    continue
    
                idxs_b = None
                if len(abi_hkm_channels) > 0:
                    half_width = [abi_half_width.get(ch) for ch in abi_hkm_channels]
                    strides = [abi_stride.get(ch) for ch in abi_hkm_channels]
    
                    img_b_s, img_b_s_l, img_b_s_r, idxs_b = get_images(lons, lats, timestamp, abi_hkm_channels, half_width, strides, do_norm=True, daynight=DAY_NIGHT)
                    if idxs_b.size == 0:
                        print('no hkm images for: ', timestamp)
                        continue
    
                if idxs_b is None:
                    common_idxs = idxs_a
                    img_a_s = img_a_s[:, common_idxs, :, :]
                    img_s = img_a_s
                    if TRIPLET:
                        img_a_s_l = img_a_s_l[:, common_idxs, :, :]
                        img_a_s_r = img_a_s_r[:, common_idxs, :, :]
                        img_s_l = img_a_s_l
                        img_s_r = img_a_s_r
                else:
                    common_idxs = np.intersect1d(idxs_a, idxs_b)
                    img_a_s = img_a_s[:, common_idxs, :, :]
                    img_b_s = img_b_s[:, common_idxs, :, :]
                    img_s = np.vstack([img_a_s, img_b_s])
                    # TODO: Triplet support
    
                lons = lons[common_idxs]
                lats = lats[common_idxs]
    
                if ds_1 is not None:
                    ndb = get_interpolated_profile(ds_0, ds_1, time_0, time_1, 'temperature', timestamp, lons, lats, do_norm=True)
                else:
                    ndb = get_profile(ds_0, 'temperature', lons, lats, do_norm=True)
                if ndb is None:
                    continue
    
                if ds_1 is not None:
                    ndf = get_interpolated_profile(ds_0, ds_1, time_0, time_1, 'rh', timestamp, lons, lats, do_norm=False)
                else:
                    ndf = get_profile(ds_0, 'rh', lons, lats, do_norm=False)
                if ndf is None:
                    continue
                ndf /= 100.0
                ndb = np.stack((ndb, ndf), axis=2)
    
                #ndd = get_interpolated_scalar(ds_0, ds_1, time_0, time_1, 'MSL pressure', timestamp, lons, lats, do_norm=False)
                #ndd /= 1000.0
    
                #nde = get_interpolated_scalar(ds_0, ds_1, time_0, time_1, 'surface temperature', timestamp, lons, lats, do_norm=True)
    
                # label/truth
                # Level of best fit (LBF)
                ndc = obs[common_idxs, 3]
                # AMV Predicted
                # ndc = obs[common_idxs, 4]
                ndc /= 1000.0
    
                nda = np.transpose(img_s, axes=[1, 2, 3, 0])
                if TRIPLET or CONV3D:
                    nda_l = np.transpose(img_s_l, axes=[1, 2, 3, 0])
                    nda_r = np.transpose(img_s_r, axes=[1, 2, 3, 0])
                    if CONV3D:
                        nda = np.stack((nda_l, nda, nda_r), axis=4)
                        nda = np.transpose(nda, axes=[0, 1, 2, 4, 3])
                    else:
                        nda = np.concatenate([nda, nda_l, nda_r], axis=3)
    
                images.append(nda)
                vprof.append(ndb)
                label.append(ndc)
                # nds = np.stack([ndd, nde], axis=1)
                nds = np.zeros((len(lons), 2))
                sfc.append(nds)
    
                if not CACHE_GFS:
                    subprocess.call(['rm', gfs_0, gfs_1])
    
                if CACHE_DATA_IN_MEM:
                    self.in_mem_data_cache[key] = (nda, ndb, ndc, nds)
    
                ds_0.close()
                if ds_1 is not None:
                   ds_1.close()
    
            images = np.concatenate(images)
    
            label = np.concatenate(label)
            label = np.reshape(label, (label.shape[0], 1))
    
            vprof = np.concatenate(vprof)
    
            sfc = np.concatenate(sfc)
    
            return images, vprof, label, sfc
    
        @tf.function(input_signature=[tf.TensorSpec(None, tf.int32)])
        def data_function(self, input):
            out = tf.numpy_function(self.get_in_mem_data_batch, [input], [tf.float32, tf.float64, tf.float64, tf.float64])
            return out
    
        def get_train_dataset(self, time_keys):
            time_keys = list(time_keys)
    
            dataset = tf.data.Dataset.from_tensor_slices(time_keys)
            dataset = dataset.batch(PROC_BATCH_SIZE)
            dataset = dataset.map(self.data_function, num_parallel_calls=8)
            dataset = dataset.shuffle(PROC_BATCH_BUFFER_SIZE)
            dataset = dataset.prefetch(buffer_size=1)
            self.train_dataset = dataset
    
        def get_test_dataset(self, time_keys):
            time_keys = list(time_keys)
    
            dataset = tf.data.Dataset.from_tensor_slices(time_keys)
            dataset = dataset.batch(PROC_BATCH_SIZE)
            dataset = dataset.map(self.data_function, num_parallel_calls=8)
            self.test_dataset = dataset
    
        def setup_pipeline(self, matchup_dict, train_dict=None, valid_test_dict=None):
            self.matchup_dict = matchup_dict
    
            if train_dict is None:
                if valid_test_dict is not None:
                    self.matchup_dict = valid_test_dict
                    valid_keys = list(valid_test_dict.keys())
                    self.get_test_dataset(valid_keys)
                    self.num_data_samples = get_num_samples(valid_test_dict, valid_keys)
                    print('num test samples: ', self.num_data_samples)
                    print('setup_pipeline: Done')
                    return
    
                train_dict, valid_test_dict = split_matchup(matchup_dict, perc=0.10)
    
            train_dict = shuffle_dict(train_dict)
            train_keys = list(train_dict.keys())
    
            self.get_train_dataset(train_keys)
    
            self.num_data_samples = get_num_samples(train_dict, train_keys)
            print('num data samples: ', self.num_data_samples)
            print('BATCH SIZE: ', BATCH_SIZE)
    
            valid_keys = list(valid_test_dict.keys())
            self.get_test_dataset(valid_keys)
            print('num test samples: ', get_num_samples(valid_test_dict, valid_keys))
    
            print('setup_pipeline: Done')
    
        def build_1d_cnn(self):
            print('build_1d_cnn')
            # padding = 'VALID'
            padding = 'SAME'
    
            # activation = tf.nn.relu
            # activation = tf.nn.elu
            activation = tf.nn.leaky_relu
    
            num_filters = 6
    
            conv = tf.keras.layers.Conv1D(num_filters, 5, strides=1, padding=padding)(self.inputs[1])
            conv = tf.keras.layers.MaxPool1D(padding=padding)(conv)
            print(conv)
    
            num_filters *= 2
            conv = tf.keras.layers.Conv1D(num_filters, 3, strides=1, padding=padding)(conv)
            conv = tf.keras.layers.MaxPool1D(padding=padding)(conv)
            print(conv)
    
            num_filters *= 2
            conv = tf.keras.layers.Conv1D(num_filters, 3, strides=1, padding=padding)(conv)
            conv = tf.keras.layers.MaxPool1D(padding=padding)(conv)
            print(conv)
    
            num_filters *= 2
            conv = tf.keras.layers.Conv1D(num_filters, 3, strides=1, padding=padding)(conv)
            conv = tf.keras.layers.MaxPool1D(padding=padding)(conv)
            print(conv)
    
            flat = tf.keras.layers.Flatten()(conv)
            print(flat)
    
            return flat
    
        def build_cnn(self):
            print('build_cnn')
            # padding = "VALID"
            padding = "SAME"
    
            # activation = tf.nn.relu
            # activation = tf.nn.elu
            activation = tf.nn.leaky_relu
            momentum = 0.99
    
            num_filters = 8
    
            conv = tf.keras.layers.Conv2D(num_filters, 5, strides=[1, 1], padding=padding, activation=activation)(self.inputs[0])
            conv = tf.keras.layers.MaxPool2D(padding=padding)(conv)
            conv = tf.keras.layers.BatchNormalization()(conv)
            print(conv.shape)
    
            num_filters *= 2
            conv = tf.keras.layers.Conv2D(num_filters, 3, strides=[1, 1], padding=padding, activation=activation)(conv)
            conv = tf.keras.layers.MaxPool2D(padding=padding)(conv)
            conv = tf.keras.layers.BatchNormalization()(conv)
            print(conv.shape)
    
            num_filters *= 2
            conv = tf.keras.layers.Conv2D(num_filters, 3, strides=[1, 1], padding=padding, activation=activation)(conv)
            conv = tf.keras.layers.MaxPool2D(padding=padding)(conv)
            conv = tf.keras.layers.BatchNormalization()(conv)
            print(conv.shape)
    
            num_filters *= 2
            conv = tf.keras.layers.Conv2D(num_filters, 3, strides=[1, 1], padding=padding, activation=activation)(conv)
            conv = tf.keras.layers.MaxPool2D(padding=padding)(conv)
            conv = tf.keras.layers.BatchNormalization()(conv)
            print(conv.shape)
    
            num_filters *= 2
            conv = tf.keras.layers.Conv2D(num_filters, 3, strides=[1, 1], padding=padding, activation=activation)(conv)
            conv = tf.keras.layers.MaxPool2D(padding=padding)(conv)
            conv = tf.keras.layers.BatchNormalization()(conv)
            print(conv.shape)
    
            flat = tf.keras.layers.Flatten()(conv)
    
            return flat
    
        def build_anc_dnn(self):
            print('build_anc_dnn')
            drop_rate = 0.5
    
            # activation = tf.nn.relu
            # activation = tf.nn.elu
            activation = tf.nn.leaky_relu
            momentum = 0.99
    
            n_hidden = self.X_sfc.shape[1]
    
            with tf.name_scope("Residual_Block_6"):
                fc = tf.keras.layers.Dropout(drop_rate)(self.inputs[2])
                fc = tf.keras.layers.Dense(4*n_hidden, activation=activation)(fc)
                fc = tf.keras.layers.BatchNormalization()(fc)
                print(fc.shape)
                fc_skip = fc
    
                fc = tf.keras.layers.Dropout(drop_rate)(fc)
                fc = tf.keras.layers.Dense(4*n_hidden, activation=activation)(fc)
                fc = tf.keras.layers.BatchNormalization()(fc)
                print(fc.shape)
    
                fc = tf.keras.layers.Dropout(drop_rate)(fc)
                fc = tf.keras.layers.Dense(4*n_hidden, activation=None)(fc)
                fc = tf.keras.layers.BatchNormalization()(fc)
                fc = fc + fc_skip
                fc = tf.keras.layers.LeakyReLU()(fc)
                print(fc.shape)
    
            return fc
    
        def build_dnn(self, input_layer=None):
            print('build fully connected layer')
            drop_rate = 0.5
    
            # activation = tf.nn.relu
            # activation = tf.nn.elu
            activation = tf.nn.leaky_relu
            momentum = 0.99
            
            if input_layer is not None:
                flat = input_layer
                n_hidden = input_layer.shape[1]
            else:
                flat = self.X_img
                n_hidden = self.X_img.shape[1]
    
            fac = 1
    
            fc = build_residual_block(flat, drop_rate, fac*n_hidden, activation, 'Residual_Block_1')
    
            fc = build_residual_block(fc, drop_rate, fac*n_hidden, activation, 'Residual_Block_2')
    
            fc = build_residual_block(fc, drop_rate, fac*n_hidden, activation, 'Residual_Block_3')
    
            fc = build_residual_block(fc, drop_rate, fac*n_hidden, activation, 'Residual_Block_4')
    
            fc = build_residual_block(fc, drop_rate, fac*n_hidden, activation, 'Residual_Block_5')
    
            fc = tf.keras.layers.Dense(n_hidden, activation=activation)(fc)
            fc = tf.keras.layers.BatchNormalization()(fc)
            print(fc.shape)
    
            logits = tf.keras.layers.Dense(NumLabels)(fc)
            print(logits.shape)
            
            self.logits = logits
    
        def build_training(self):
            self.loss = tf.keras.losses.MeanSquaredError(reduction=tf.keras.losses.Reduction.NONE)
    
            # decayed_learning_rate = learning_rate * decay_rate ^ (global_step / decay_steps)
            initial_learning_rate = 0.0016
            decay_rate = 0.95
            steps_per_epoch = int(self.num_data_samples/BATCH_SIZE)  # one epoch
            # decay_steps = int(steps_per_epoch / 2)
            decay_steps = 2 * steps_per_epoch
            print('initial rate, decay rate, steps/epoch, decay steps: ', initial_learning_rate, decay_rate, steps_per_epoch, decay_steps)
    
            self.learningRateSchedule = tf.keras.optimizers.schedules.ExponentialDecay(initial_learning_rate, decay_steps, decay_rate)
    
            optimizer = tf.keras.optimizers.Adam(learning_rate=self.learningRateSchedule)
    
            if TRACK_MOVING_AVERAGE:
                ema = tf.train.ExponentialMovingAverage(decay=0.999)
    
                with tf.control_dependencies([optimizer]):
                    optimizer = ema.apply(self.model.trainable_variables)
    
            self.optimizer = optimizer
            self.initial_learning_rate = initial_learning_rate
    
        def build_evaluation(self):
            self.train_accuracy = tf.keras.metrics.MeanAbsoluteError(name='train_accuracy')
            self.test_accuracy = tf.keras.metrics.MeanAbsoluteError(name='test_accuracy')
            self.train_loss = tf.keras.metrics.Mean(name='train_loss')
            self.test_loss = tf.keras.metrics.Mean(name='test_loss')
    
            self.accuracy_0 = tf.keras.metrics.MeanAbsoluteError(name='acc_0')
            self.accuracy_1 = tf.keras.metrics.MeanAbsoluteError(name='acc_1')
            self.accuracy_2 = tf.keras.metrics.MeanAbsoluteError(name='acc_2')
            self.accuracy_3 = tf.keras.metrics.MeanAbsoluteError(name='acc_3')
            self.accuracy_4 = tf.keras.metrics.MeanAbsoluteError(name='acc_4')
            self.accuracy_5 = tf.keras.metrics.MeanAbsoluteError(name='acc_5')
    
        def build_predict(self):
            _, pred = tf.nn.top_k(self.logits)
            self.pred_class = pred
    
            if TRACK_MOVING_AVERAGE:
                self.variable_averages = tf.train.ExponentialMovingAverage(0.999, self.global_step)
                self.variable_averages.apply(self.model.trainable_variables)
    
        @tf.function
        def train_step(self, mini_batch):
            inputs = [mini_batch[0], mini_batch[1], mini_batch[3]]
            labels = mini_batch[2]
            with tf.GradientTape() as tape:
                pred = self.model(inputs, training=True)
                loss = self.loss(labels, pred)
                loss = tf.nn.compute_average_loss(loss, global_batch_size=BATCH_SIZE)
                total_loss = loss
                if len(self.model.losses) > 0:
                    reg_loss = tf.math.add_n(self.model.losses)
                    total_loss = loss + reg_loss
            gradients = tape.gradient(total_loss, self.model.trainable_variables)
            self.optimizer.apply_gradients(zip(gradients, self.model.trainable_variables))
    
            self.train_loss(loss)
            self.train_accuracy(labels, pred)
    
            return loss
    
        @tf.function
        def test_step(self, mini_batch):
            inputs = [mini_batch[0], mini_batch[1], mini_batch[3]]
            labels = mini_batch[2]
            pred = self.model(inputs, training=False)
            t_loss = self.loss(labels, pred)
    
            self.test_loss(t_loss)
            self.test_accuracy(labels, pred)
    
            return t_loss
    
        @tf.function
        def distributed_train_step(self, dataset_inputs):
            per_replica_losses = self.strategy.run(self.train_step, args=(dataset_inputs,))
            return self.strategy.reduce(tf.distribute.ReduceOp.SUM, per_replica_losses, axis=None)
    
        @tf.function
        def distributed_test_step(self, dataset_inputs):
            return self.strategy.run(self.test_step, args=(dataset_inputs,))
    
        def predict(self, mini_batch):
            inputs = [mini_batch[0], mini_batch[1], mini_batch[3]]
            labels = mini_batch[2]
            pred = self.model(inputs, training=False)
            t_loss = self.loss(labels, pred)
    
            self.test_loss(t_loss)
            self.test_accuracy(labels, pred)
    
            m = np.logical_and(labels >= 0.01, labels < 0.2)
            self.num_0 += np.sum(m)
            self.accuracy_0(labels[m], pred[m])
    
            m = np.logical_and(labels >= 0.2, labels < 0.4)
            self.num_1 += np.sum(m)
            self.accuracy_1(labels[m], pred[m])
    
            m = np.logical_and(labels >= 0.4, labels < 0.6)
            self.num_2 += np.sum(m)
            self.accuracy_2(labels[m], pred[m])
    
            m = np.logical_and(labels >= 0.6, labels < 0.8)
            self.num_3 += np.sum(m)
            self.accuracy_3(labels[m], pred[m])
    
            m = np.logical_and(labels >= 0.8, labels < 1.15)
            self.num_4 += np.sum(m)
            self.accuracy_4(labels[m], pred[m])
    
            m = np.logical_and(labels >= 0.01, labels < 0.5)
            self.num_5 += np.sum(m)
            self.accuracy_5(labels[m], pred[m])
    
        def do_training(self, ckpt_dir=None):
    
            if ckpt_dir is None:
                if not os.path.exists(modeldir):
                    os.mkdir(modeldir)
                ckpt = tf.train.Checkpoint(step=tf.Variable(1), model=self.model)
                ckpt_manager = tf.train.CheckpointManager(ckpt, modeldir, max_to_keep=3)
            else:
                ckpt = tf.train.Checkpoint(step=tf.Variable(1), model=self.model)
                ckpt_manager = tf.train.CheckpointManager(ckpt, ckpt_dir, max_to_keep=3)
    
            self.writer_train = tf.summary.create_file_writer(os.path.join(logdir, 'plot_train'))
            self.writer_valid = tf.summary.create_file_writer(os.path.join(logdir, 'plot_valid'))
    
            step = 0
            total_time = 0
    
            for epoch in range(NUM_EPOCHS):
                self.train_loss.reset_states()
                self.train_accuracy.reset_states()
    
                t0 = datetime.datetime.now().timestamp()
    
                proc_batch_cnt = 0
                n_samples = 0
    
                for abi, temp, lbfp, sfc in self.train_dataset:
                    trn_ds = tf.data.Dataset.from_tensor_slices((abi, temp, lbfp, sfc))
                    trn_ds = trn_ds.batch(BATCH_SIZE)
                    trn_dist_ds = self.strategy.experimental_distribute_dataset(trn_ds)
                    for mini_batch in trn_dist_ds:
                        if self.learningRateSchedule is not None:
                            loss = self.distributed_train_step(mini_batch)
    
                        if (step % 100) == 0:
    
                            with self.writer_train.as_default():
                                tf.summary.scalar('loss_trn', loss.numpy(), step=step)
                                tf.summary.scalar('num_train_steps', step, step=step)
                                tf.summary.scalar('num_epochs', epoch, step=step)
    
                            self.test_loss.reset_states()
                            self.test_accuracy.reset_states()
    
                            for abi_tst, temp_tst, lbfp_tst, sfc_tst in self.test_dataset:
                                tst_ds = tf.data.Dataset.from_tensor_slices((abi_tst, temp_tst, lbfp_tst, sfc_tst))
                                tst_ds = tst_ds.batch(BATCH_SIZE)
                                tst_dist_ds = self.strategy.experimental_distribute_dataset(tst_ds)
                                for mini_batch_test in tst_dist_ds:
                                    self.distributed_test_step(mini_batch_test)
    
                            with self.writer_valid.as_default():
                                tf.summary.scalar('loss_val', self.test_loss.result(), step=step)
                                tf.summary.scalar('acc_val', self.test_accuracy.result(), step=step)
                                tf.summary.scalar('num_train_steps', step, step=step)
                                tf.summary.scalar('num_epochs', epoch, step=step)
    
                            print('****** test loss, acc: ', self.test_loss.result(), self.test_accuracy.result())
    
                        step += 1
                        print('train loss: ', loss.numpy())
    
                    proc_batch_cnt += 1
                    n_samples += abi.shape[0]
                    print('proc_batch_cnt: ', proc_batch_cnt, n_samples)
    
                t1 = datetime.datetime.now().timestamp()
                print('End of Epoch: ', epoch+1, 'elapsed time: ', (t1-t0))
                total_time += (t1-t0)
    
                self.test_loss.reset_states()
                self.test_accuracy.reset_states()
                for abi, temp, lbfp, sfc in self.test_dataset:
                    ds = tf.data.Dataset.from_tensor_slices((abi, temp, lbfp, sfc))
                    ds = ds.batch(BATCH_SIZE)
                    tst_dist_ds = self.strategy.experimental_distribute_dataset(ds)
                    for mini_batch_test in tst_dist_ds:
                        self.distributed_test_step(mini_batch_test)
    
                print('loss, acc: ', self.test_loss.result(), self.test_accuracy.result())
                ckpt_manager.save()
    
                if self.DISK_CACHE and epoch == 0:
                    f = open(cachepath, 'wb')
                    pickle.dump(self.in_mem_data_cache, f)
                    f.close()
    
            print('total time: ', total_time)
            self.writer_train.close()
            self.writer_valid.close()
    
        def build_model(self):
            flat = self.build_cnn()
            flat_1d = self.build_1d_cnn()
            # flat_anc = self.build_anc_dnn()
            # flat = tf.keras.layers.concatenate([flat, flat_1d, flat_anc])
            flat = tf.keras.layers.concatenate([flat, flat_1d])
            self.build_dnn(flat)
            self.model = tf.keras.Model(self.inputs, self.logits)
    
        def restore(self, ckpt_dir):
    
            ckpt = tf.train.Checkpoint(step=tf.Variable(1), model=self.model)
            ckpt_manager = tf.train.CheckpointManager(ckpt, ckpt_dir, max_to_keep=3)
    
            ckpt.restore(ckpt_manager.latest_checkpoint)
    
            self.test_loss.reset_states()
            self.test_accuracy.reset_states()
    
            for abi_tst, temp_tst, lbfp_tst, sfc_tst in self.test_dataset:
                ds = tf.data.Dataset.from_tensor_slices((abi_tst, temp_tst, lbfp_tst, sfc_tst))
                ds = ds.batch(BATCH_SIZE)
                for mini_batch_test in ds:
                    self.predict(mini_batch_test)
            print('loss, acc: ', self.test_loss.result(), self.test_accuracy.result())
            print('acc_0', self.num_0, self.accuracy_0.result())
            print('acc_1', self.num_1, self.accuracy_1.result())
            print('acc_2', self.num_2, self.accuracy_2.result())
            print('acc_3', self.num_3, self.accuracy_3.result())
            print('acc_4', self.num_4, self.accuracy_4.result())
            print('acc_5', self.num_5, self.accuracy_5.result())
    
        def run(self, matchup_dict, train_dict=None, valid_dict=None):
            with self.strategy.scope():
                self.setup_pipeline(matchup_dict, train_dict=train_dict, valid_test_dict=valid_dict)
                self.build_model()
                self.build_training()
                self.build_evaluation()
                self.do_training()
    
        def run_restore(self, matchup_dict, ckpt_dir):
            self.setup_pipeline(None, None, matchup_dict)
            self.build_model()
            self.build_training()
            self.build_evaluation()
            self.restore(ckpt_dir)
    
    
    if __name__ == "__main__":
        nn = CloudHeightNN()
        nn.run('matchup_filename')