Skip to content
Snippets Groups Projects
Select Git revision
  • df44ff8df1f20b34d3bad09a7aaf4999828f903a
  • master default protected
  • use_flight_altitude
  • distribute
4 results

geos_nav.py

Blame
  • user avatar
    tomrink authored
    0f092668
    History
    geos_nav.py 9.92 KiB
    import numpy as np
    
    from scipy import linalg
    from util.util import haversine_np
    
    DEG_TO_RAD = np.pi/180.0;
    RAD_TO_DEG = 180.0/np.pi;
    r_pol = 6356.5838  # km
    r_eq = 6378.1690  # km
    
    # AHI -------------------------------
    # h = 42164.0  # barycentric height, km
    # sub_lon = 140.7
    # sub_lon *= DEG_TO_RAD
    # scan_geom = 'GEOS'
    # signs modified from static nav file to work with ABI FGF code
    # CFAC = 5.588799E-05
    # LFAC = -5.588799E-05
    # COFF = -0.1537199
    # LOFF = 0.1537199
    
    # computed from static nav file (lon, lat) grid
    # Note 0-based to the pixel center
    # CFAC = 5.58924125e-05
    # LFAC = -5.58810490e-05
    # COFF = -1.53678977e-01
    # LOFF = 1.53644345e-01
    
    # GOES ------------------------------
    h = 42164.16  # barycentric height, km
    invf = 298.2572221  # inverse flattening
    f = 1.0/invf
    fp = 1.0/((1.0-f)*(1.0-f))
    d = h*h - r_eq*r_eq
    scan_geom = 'GOES'
    sub_lon = -75.0
    sub_lon *= DEG_TO_RAD
    
    # official for FD
    CFAC = 5.6E-05
    LFAC = -5.6E-05
    COFF = -0.151844
    LOFF = 0.151844
    
    # official for CONUS
    #CFAC = 5.6E-05
    #COFF = -0.101332
    #LFAC = -5.6E-05
    #LOFF = 0.128212
    
    # computed for CLAVRx FD
    #CFAC = 5.60016368e-05
    #LFAC = -5.59941969e-05
    #COFF = -1.51780260e-01
    #LOFF = 1.51773560e-01
    
    # 65536 = 2^16
    
    
    def goes_to_geos(lamda_goes, theta_goes):
        theta_geos = np.arcsin(np.sin(theta_goes) * np.cos(lamda_goes))
        lamda_geos = np.arctan(np.tan(lamda_goes) / np.cos(theta_goes))
    
        return lamda_geos, theta_geos
    
    
    class GEOSNavigation:
        def __init__(self, sub_lon=-75.0, barycentric_height=42164.16, scan_geom='GOES', CFAC=5.6E-05, LFAC=-5.6E-05, COFF=-0.151844, LOFF=0.151844, num_elems=5424, num_lines=5424):
            self.sub_lon = sub_lon * DEG_TO_RAD
            self.h = barycentric_height
            self.scan_geom = scan_geom
            self.CFAC = CFAC
            self.LFAC = LFAC
            self.COFF = COFF
            self.LOFF = LOFF
            self.num_lines = num_lines
            self.num_elems = num_elems
    
        def earth_to_sat(self, geographic_lon, geographic_lat):
    
            geographic_lon *= DEG_TO_RAD
            geographic_lat *= DEG_TO_RAD
    
            geocentric_lat = np.arctan(((r_pol*r_pol)/(r_eq*r_eq))*np.tan(geographic_lat))
    
            r_earth = r_pol / np.sqrt(1.0 - ((r_eq * r_eq - r_pol * r_pol) / (r_eq * r_eq)) * np.cos(geocentric_lat) * np.cos(geocentric_lat))
    
            r_1 = self.h - r_earth * np.cos(geocentric_lat) * np.cos(geographic_lon - self.sub_lon)
            r_2 = -r_earth * np.cos(geocentric_lat) * np.sin(geographic_lon - self.sub_lon)
            r_3 = r_earth * np.sin(geocentric_lat)
            r = np.sqrt(r_1*r_1 + r_2*r_2 + r_3*r_3)
    
            if r >= self.h:
                return np.nan, np.nan
    
            if self.scan_geom == 'GEOS':
                lamda_sat = np.arctan(-r_2/r_1)
                theta_sat = np.arcsin(r_3/np.sqrt(r_1*r_1 + r_2*r_2 + r_3*r_3))
            elif self.scan_geom == 'GOES':
                lamda_sat = np.arcsin(-r_2/np.sqrt(r_1*r_1 + r_2*r_2 + r_3*r_3))
                theta_sat = np.arctan(r_3/r_1)
    
            return lamda_sat, theta_sat
    
        def earth_to_sat_s(self, geographic_lon, geographic_lat):
    
            geographic_lon = geographic_lon * DEG_TO_RAD
            geographic_lat = geographic_lat * DEG_TO_RAD
    
            geocentric_lat = np.arctan(((r_pol*r_pol)/(r_eq*r_eq))*np.tan(geographic_lat))
    
            r_earth = r_pol / np.sqrt(1.0 - ((r_eq * r_eq - r_pol * r_pol) / (r_eq * r_eq)) * (np.cos(geocentric_lat))**2)
    
            r_1 = self.h - r_earth * np.cos(geocentric_lat) * np.cos(geographic_lon - self.sub_lon)
            r_2 = -r_earth * np.cos(geocentric_lat) * np.sin(geographic_lon - self.sub_lon)
            r_3 = r_earth * np.sin(geocentric_lat)
            r = np.sqrt(r_1*r_1 + r_2*r_2 + r_3*r_3)
    
            if self.scan_geom == 'GEOS':
                lamda_sat = np.arctan(-r_2/r_1)
                theta_sat = np.arcsin(r_3/np.sqrt(r_1*r_1 + r_2*r_2 + r_3*r_3))
            elif self.scan_geom == 'GOES':
                lamda_sat = np.arcsin(-r_2/np.sqrt(r_1*r_1 + r_2*r_2 + r_3*r_3))
                theta_sat = np.arctan(r_3/r_1)
    
            lamda_sat = np.where(r > self.h, np.nan, lamda_sat)
            theta_sat = np.where(r > self.h, np.nan, theta_sat)
    
            return lamda_sat, theta_sat
    
        def sat_to_lc(self, lamda, theta):
            # c = COFF + np.rint(lamda * (1/np.power(2, 16)) * CFAC)
            # l = LOFF + np.rint(theta * (1/np.power(2, 16)) * LFAC)
    
            # (float(2 ** 16) * (float(lc) - off)) / float(fac) * DEG_TO_RAD
    
            cc = (lamda - self.COFF) / self.CFAC
            ll = (theta - self.LOFF) / self.LFAC
    
            cc = np.floor(cc + 0.5)
            ll = np.floor(ll + 0.5)
    
            cc = cc.astype(np.int32)
            ll = ll.astype(np.int32)
    
            return cc, ll
    
        def earth_to_lc(self, lon, lat):
            lamda, theta = self.earth_to_sat(lon, lat)
            if np.isnan(lamda):
                return None, None
            cc, ll = self.sat_to_lc(lamda, theta)
            return cc, ll
    
        def earth_to_lc_s(self, lons, lats):
            lamda, theta = self.earth_to_sat_s(lons, lats)
            cc, ll = self.sat_to_lc(lamda, theta)
    
            cc = np.where(np.isnan(lamda), -1, cc)
            cc = np.where(cc < 0, -1, cc)
            cc = np.where(cc >= self.num_elems, -1, cc)
    
            ll = np.where(np.isnan(theta), -1, ll)
            ll = np.where(ll < 0, -1, ll)
            ll = np.where(ll >= self.num_lines, -1, ll)
    
            cc[ll == -1] = -1
            ll[cc == -1] = -1
    
            return cc, ll
    
        def lc_to_earth(self, cc, ll):
            x = cc * self.CFAC + self.COFF
            y = ll * self.LFAC + self.LOFF
    
            lon, lat = self.sat_to_earth_s(x, y)
    
            return lon, lat
    
        def earth_to_indexs(self, lons, lats, len_x):
            num = lons.shape[0]
            idxs = []
            for i in range(num):
                cc, ll = self.earth_to_lc(lons[i], lats[i])
                if cc is None:
                    idxs.append(-1)
                else:
                    idx = ll * len_x + cc
                    idxs.append(idx)
            idxs = np.array(idxs)
    
            return idxs
    
        def sat_to_earth_s(self, x, y):
            if self.scan_geom == 'GOES':
                x, y = goes_to_geos(x, y)
    
            c1 = (h * np.cos(x) * np.cos(y)) * (h * np.cos(x) * np.cos(y))
            c2 = (np.cos(y) * np.cos(y) + fp * np.sin(y) * np.sin(y)) * d
    
            c1 = np.where(c1 < c2, np.nan, c1)
            c2 = np.where(c1 < c2, np.nan, c2)
    
            s_d = np.sqrt(c1 - c2)
            s_n = (h * np.cos(x) * np.cos(y) - s_d) / (np.cos(y) * np.cos(y) + fp * np.sin(y) * np.sin(y))
            s_1 = h - s_n * np.cos(x) * np.cos(y)
            s_2 = s_n * np.sin(x) * np.cos(y)
            s_3 = s_n * np.sin(y)
            s_xy = np.sqrt(s_1 * s_1 + s_2 * s_2)
    
            geographic_lon = np.arctan(s_2 / s_1) + self.sub_lon
            geographic_lat = np.arctan(fp * (s_3 / s_xy))
    
            geographic_lon *= RAD_TO_DEG
            geographic_lat *= RAD_TO_DEG
    
            return geographic_lon, geographic_lat
    
        def sat_to_earth(self, x, y):
            if self.scan_geom == 'GOES':
                x, y = goes_to_geos(x, y)
    
            c1 = (h * np.cos(x) * np.cos(y)) * (h * np.cos(x) * np.cos(y))
            c2 = (np.cos(y) * np.cos(y) + fp * np.sin(y) * np.sin(y)) * d
    
            if c1 < c2:
                return np.nan, np.nan
    
            s_d = np.sqrt(c1 - c2)
            s_n = (h * np.cos(x) * np.cos(y) - s_d) / (np.cos(y) * np.cos(y) + fp * np.sin(y) * np.sin(y))
            s_1 = h - s_n * np.cos(x) * np.cos(y)
            s_2 = s_n * np.sin(x) * np.cos(y)
            s_3 = s_n * np.sin(y)
            s_xy = np.sqrt(s_1 * s_1 + s_2 * s_2)
    
            geographic_lon = np.arctan(s_2 / s_1) + self.sub_lon
            geographic_lat = np.arctan(fp * (s_3 / s_xy))
    
            geographic_lon *= RAD_TO_DEG
            geographic_lat *= RAD_TO_DEG
    
            return geographic_lon, geographic_lat
    
        def check_inside(self, lon, lat):
            return True
    
    
    def get_navigation(satellite='GOES16', domain='FD'):
        nav = None
        if satellite == 'GOES16':
            if domain == 'FD':
                nav = GEOSNavigation()
            elif domain == 'CONUS':
                nav = GEOSNavigation(sub_lon=-75.0, CFAC=5.6E-05, COFF=-0.101332,
                                     LFAC=-5.6E-05, LOFF=0.128212, num_elems=2500, num_lines=1500)
        elif satellite == 'GOES17':
            if domain == 'FD':
                nav = GEOSNavigation(sub_lon=-137.0)
            elif domain == 'CONUS':
                pass
        elif satellite == 'H08':
            nav = GEOSNavigation(sub_lon=140.7, barycentric_height=42164.0, scan_geom='GEOS',
                                 CFAC=5.58879902955962e-05, LFAC=-5.58879902955962e-05,
                                 COFF=-0.153719917308037, LOFF=0.153719917308037, num_elems=5500, num_lines=5500)
    
        return nav
    
    
    def get_lon_lat_2d_mesh(nav, ll, cc, offset=0):
        num_elems = len(cc)
        num_lines = len(ll)
        cc = np.array(cc)
        ll = np.array(ll)
        cc[:] += offset
        ll[:] += offset
        x_rad = cc * nav.CFAC + nav.COFF
        y_rad = ll * nav.LFAC + nav.LOFF
    
        ll, cc = np.meshgrid(ll, cc, indexing='ij')
        cc = cc.flatten()
        ll = ll.flatten()
        lon_s, lat_s = nav.lc_to_earth(cc, ll)
        lons_2d = lon_s.reshape((num_lines, num_elems))
        lats_2d = lat_s.reshape((num_lines, num_elems))
    
        return lons_2d, lats_2d, x_rad, y_rad
    
    # def compute_scale_offset(lon_a, lat_a, col_a, line_a, lon_b, lat_b, col_b, line_b):
    #     lamda_a, theta_a = earth_to_sat(lon_a, lat_a)
    #     lamda_b, theta_b = earth_to_sat(lon_b, lat_b)
    #
    #     # To setup the problem below
    #     # (CFAC * col_a) + COFF = lamda_a
    #     # (CFAC * col_b) + COFF = lamda_b
    #
    #     # (LFAC * line_a) + LOFF = theta_a
    #     # (LFAC * line_b) + LOFF = theta_b
    #
    #     a = np.array([[col_a, 1], [col_b, 1]])
    #     b = np.array([lamda_a, lamda_b])
    #     x = linalg.solve(a, b)
    #     print(x)
    #
    #     a = np.array([[line_a, 1], [line_b, 1]])
    #     b = np.array([theta_a, theta_b])
    #     x = linalg.solve(a, b)
    #     print(x)
    #
    #
    # def test(flons, flats):
    #     fflons = flons.flatten()
    #     fflats = flats.flatten()
    #     num = len(fflons)
    #
    #     for i in range(0, num-1, 50000):
    #         lon = fflons[i]
    #         lat = fflats[i]
    #         if lon == -999.0:
    #             continue
    #         c, l = earth_to_lc(lon, lat)
    #         print(lon, flons[l,c])
    #         print(lat, flats[l,c])
    #         print(haversine_np(lon, lat, flons[l,c], flats[l,c]))
    #         print('-----------------------')