Skip to content
Snippets Groups Projects
cloud_opd_fcn_abi.py 46.58 KiB
import contextlib

import tensorflow as tf

from deeplearning.cloud_fraction_fcn_abi import get_label_data_5cat
from util.augment import augment_image
from util.setup_cloud_products import logdir, modeldir, now, ancillary_path
from util.util import EarlyStop, normalize, denormalize, scale, scale2, descale, \
    get_grid_values_all, make_tf_callable_generator
import glob
import os
import datetime
import numpy as np
import pickle
import h5py
import xarray as xr
import gc
import time

AUTOTUNE = tf.data.AUTOTUNE

LOG_DEVICE_PLACEMENT = False

PROC_BATCH_SIZE = 4
PROC_BATCH_BUFFER_SIZE = 5000

NumClasses = 5
if NumClasses == 2:
    NumLogits = 1
else:
    NumLogits = NumClasses

BATCH_SIZE = 128
NUM_EPOCHS = 100

EARLY_STOP = True
PATIENCE = 7

NOISE_TRAINING = False
NOISE_STDDEV = 0.01
DO_AUGMENT = True

DO_SMOOTH = False
SIGMA = 1.0
DO_ZERO_OUT = False
# CACHE_FILE = '/scratch/long/rink/cld_opd_abi_128x128_cache'
CACHE_FILE = ''
USE_EMA = False
EMA_OVERWRITE_FREQUENCY = 5
EMA_MOMENTUM = 0.99
BETA_1 = 0.9
BETA_2 = 0.999

# setup scaling parameters dictionary
mean_std_dct = {}
mean_std_file = ancillary_path+'mean_std_lo_hi_l2.pkl'
f = open(mean_std_file, 'rb')
mean_std_dct_l2 = pickle.load(f)
f.close()

mean_std_file = ancillary_path+'mean_std_lo_hi_l1b.pkl'
f = open(mean_std_file, 'rb')
mean_std_dct_l1b = pickle.load(f)
f.close()

mean_std_dct.update(mean_std_dct_l1b)
mean_std_dct.update(mean_std_dct_l2)

IMG_DEPTH = 1

label_param = 'cld_opd_dcomp'

params = ['temp_11_0um_nom', 'refl_0_65um_nom', 'refl_submin_ch01', 'refl_submax_ch01', 'refl_substddev_ch01', 'cloud_probability', label_param]
params_i = ['temp_11_0um_nom', 'refl_0_65um_nom', 'cloud_probability', label_param]
data_params_half = ['temp_11_0um_nom', 'refl_0_65um_nom']
sub_fields = ['refl_submin_ch01', 'refl_submax_ch01', 'refl_substddev_ch01']
data_params_full = ['refl_0_65um_nom']

label_idx_i = params_i.index(label_param)
label_idx = params.index(label_param)

print('data_params_half: ', data_params_half)
print('data_params_full: ', data_params_full)
print('label_param: ', label_param)

KERNEL_SIZE = 3
X_LEN = Y_LEN = 128

if KERNEL_SIZE == 3:
    slc_x = slice(0, X_LEN // 4 + 2)
    slc_y = slice(0, Y_LEN // 4 + 2)
    x_64 = slice(4, X_LEN + 4)
    y_64 = slice(4, Y_LEN + 4)
elif KERNEL_SIZE == 1:
    slc_x = slice(1, X_LEN // 4 + 1)
    slc_y = slice(1, Y_LEN // 4 + 1)
    x_64 = slice(4, X_LEN + 4)
    y_64 = slice(4, Y_LEN + 4)
# ----------------------------------------


@contextlib.contextmanager
def options(options):
  old_opts = tf.config.optimizer.get_experimental_options()
  tf.config.optimizer.set_experimental_options(options)
  try:
    yield
  finally:
    tf.config.optimizer.set_experimental_options(old_opts)


def build_residual_conv2d_block(conv, num_filters, block_name, activation=tf.nn.relu, padding='SAME',
                                kernel_initializer='he_uniform', scale=None, kernel_size=3,
                                do_drop_out=True, drop_rate=0.5, do_batch_norm=True):

    with tf.name_scope(block_name):
        skip = tf.keras.layers.Conv2D(num_filters, kernel_size=kernel_size, padding=padding, kernel_initializer=kernel_initializer, activation=activation)(conv)
        skip = tf.keras.layers.Conv2D(num_filters, kernel_size=kernel_size, padding=padding, activation=None)(skip)

        if scale is not None:
            skip = tf.keras.layers.Lambda(lambda x: x * scale)(skip)

        if do_drop_out:
            skip = tf.keras.layers.Dropout(drop_rate)(skip)

        if do_batch_norm:
            skip = tf.keras.layers.BatchNormalization()(skip)

        conv = conv + skip
        print(block_name+':', conv.shape)

    return conv


def upsample_mean(grd):
    bsize, ylen, xlen = grd.shape
    up = np.zeros((bsize, ylen*2, xlen*2))

    up[:, ::4, ::4] = grd[:, ::4, ::4]
    up[:, 1::4, ::4] = grd[:, ::4, ::4]
    up[:, ::4, 1::4] = grd[:, ::4, ::4]
    up[:, 1::4, 1::4] = grd[:, ::4, ::4]

    return up


def get_grid_cell_mean(grd_k):
    mean = np.nanmean([grd_k[:, 0::4, 0::4], grd_k[:, 1::4, 0::4], grd_k[:, 2::4, 0::4], grd_k[:, 3::4, 0::4],
                       grd_k[:, 0::4, 1::4], grd_k[:, 1::4, 1::4], grd_k[:, 2::4, 1::4], grd_k[:, 3::4, 1::4],
                       grd_k[:, 0::4, 2::4], grd_k[:, 1::4, 2::4], grd_k[:, 2::4, 2::4], grd_k[:, 3::4, 2::4],
                       grd_k[:, 0::4, 3::4], grd_k[:, 1::4, 3::4], grd_k[:, 2::4, 3::4], grd_k[:, 3::4, 3::4]], axis=0)
    # For an all-Nan slice
    np.where(np.isnan(mean), 0, mean)

    return mean


def get_min_max_std(grd_k):
    lo = np.nanmin([grd_k[:, 0::4, 0::4], grd_k[:, 1::4, 0::4], grd_k[:, 2::4, 0::4], grd_k[:, 3::4, 0::4],
                    grd_k[:, 0::4, 1::4], grd_k[:, 1::4, 1::4], grd_k[:, 2::4, 1::4], grd_k[:, 3::4, 1::4],
                    grd_k[:, 0::4, 2::4], grd_k[:, 1::4, 2::4], grd_k[:, 2::4, 2::4], grd_k[:, 3::4, 2::4],
                    grd_k[:, 0::4, 3::4], grd_k[:, 1::4, 3::4], grd_k[:, 2::4, 3::4], grd_k[:, 3::4, 3::4]], axis=0)

    hi = np.nanmax([grd_k[:, 0::4, 0::4], grd_k[:, 1::4, 0::4], grd_k[:, 2::4, 0::4], grd_k[:, 3::4, 0::4],
                    grd_k[:, 0::4, 1::4], grd_k[:, 1::4, 1::4], grd_k[:, 2::4, 1::4], grd_k[:, 3::4, 1::4],
                    grd_k[:, 0::4, 2::4], grd_k[:, 1::4, 2::4], grd_k[:, 2::4, 2::4], grd_k[:, 3::4, 2::4],
                    grd_k[:, 0::4, 3::4], grd_k[:, 1::4, 3::4], grd_k[:, 2::4, 3::4], grd_k[:, 3::4, 3::4]], axis=0)

    std = np.nanstd([grd_k[:, 0::4, 0::4], grd_k[:, 1::4, 0::4], grd_k[:, 2::4, 0::4], grd_k[:, 3::4, 0::4],
                     grd_k[:, 0::4, 1::4], grd_k[:, 1::4, 1::4], grd_k[:, 2::4, 1::4], grd_k[:, 3::4, 1::4],
                     grd_k[:, 0::4, 2::4], grd_k[:, 1::4, 2::4], grd_k[:, 2::4, 2::4], grd_k[:, 3::4, 2::4],
                     grd_k[:, 0::4, 3::4], grd_k[:, 1::4, 3::4], grd_k[:, 2::4, 3::4], grd_k[:, 3::4, 3::4]], axis=0)

    avg = np.nanmean([grd_k[:, 0::4, 0::4], grd_k[:, 1::4, 0::4], grd_k[:, 2::4, 0::4], grd_k[:, 3::4, 0::4],
                      grd_k[:, 0::4, 1::4], grd_k[:, 1::4, 1::4], grd_k[:, 2::4, 1::4], grd_k[:, 3::4, 1::4],
                      grd_k[:, 0::4, 2::4], grd_k[:, 1::4, 2::4], grd_k[:, 2::4, 2::4], grd_k[:, 3::4, 2::4],
                      grd_k[:, 0::4, 3::4], grd_k[:, 1::4, 3::4], grd_k[:, 2::4, 3::4], grd_k[:, 3::4, 3::4]], axis=0)
    # For an all-NaN slice
    np.where(np.isnan(lo), 0, lo)
    np.where(np.isnan(hi), 0, hi)
    np.where(np.isnan(std), 0, std)
    np.where(np.isnan(avg), 0, avg)

    return lo, hi, std, avg


def get_cldy_frac_opd(cld_prob, opd):
    cld_prob = np.where(np.isnan(cld_prob), 0.0, cld_prob)
    cld = np.where(cld_prob < 0.5, 0, 1)
    opd = np.where(np.isnan(opd), 0.0, opd)

    cnt_cld = cld[:, 0::4, 0::4] + cld[:, 1::4, 0::4] + cld[:, 2::4, 0::4] + cld[:, 3::4, 0::4] + \
              cld[:, 0::4, 1::4] + cld[:, 1::4, 1::4] + cld[:, 2::4, 1::4] + cld[:, 3::4, 1::4] + \
              cld[:, 0::4, 2::4] + cld[:, 1::4, 2::4] + cld[:, 2::4, 2::4] + cld[:, 3::4, 2::4] + \
              cld[:, 0::4, 3::4] + cld[:, 1::4, 3::4] + cld[:, 2::4, 3::4] + cld[:, 3::4, 3::4]

    opd_sum = np.sum([opd[:, 0::4, 0::4], opd[:, 1::4, 0::4], opd[:, 2::4, 0::4], opd[:, 3::4, 0::4],
                      opd[:, 0::4, 1::4], opd[:, 1::4, 1::4], opd[:, 2::4, 1::4], opd[:, 3::4, 1::4],
                      opd[:, 0::4, 2::4], opd[:, 1::4, 2::4], opd[:, 2::4, 2::4], opd[:, 3::4, 2::4],
                      opd[:, 0::4, 3::4], opd[:, 1::4, 3::4], opd[:, 2::4, 3::4], opd[:, 3::4, 3::4]], axis=0)

    opd[cld == 0] = 0.0
    cld_opd_sum = np.sum([opd[:, 0::4, 0::4], opd[:, 1::4, 0::4], opd[:, 2::4, 0::4], opd[:, 3::4, 0::4],
                          opd[:, 0::4, 1::4], opd[:, 1::4, 1::4], opd[:, 2::4, 1::4], opd[:, 3::4, 1::4],
                          opd[:, 0::4, 2::4], opd[:, 1::4, 2::4], opd[:, 2::4, 2::4], opd[:, 3::4, 2::4],
                          opd[:, 0::4, 3::4], opd[:, 1::4, 3::4], opd[:, 2::4, 3::4], opd[:, 3::4, 3::4]], axis=0)

    cldy_opd = np.zeros(cnt_cld.shape, dtype=opd.dtype)
    cldy_opd[cnt_cld == 0] = opd_sum[cnt_cld == 0] / 16
    cldy_opd[cnt_cld != 0] = cld_opd_sum[cnt_cld != 0] / cnt_cld[cnt_cld != 0]

    return cldy_opd


class SRCNN:
    
    def __init__(self):

        self.train_data = None
        self.train_label = None
        self.test_data = None
        self.test_label = None
        self.test_data_denorm = None
        
        self.train_dataset = None
        self.inner_train_dataset = None
        self.test_dataset = None
        self.eval_dataset = None
        self.X_img = None
        self.X_prof = None
        self.X_u = None
        self.X_v = None
        self.X_sfc = None
        self.inputs = []
        self.y = None
        self.handle = None
        self.inner_handle = None
        self.in_mem_batch = None

        self.h5f_l1b_trn = None
        self.h5f_l1b_tst = None
        self.h5f_l2_trn = None
        self.h5f_l2_tst = None

        self.logits = None

        self.predict_data = None
        self.predict_dataset = None
        self.mean_list = None
        self.std_list = None
        
        self.training_op = None
        self.correct = None
        self.accuracy = None
        self.loss = None
        self.pred_class = None
        self.variable_averages = None

        self.global_step = None

        self.writer_train = None
        self.writer_valid = None
        self.writer_train_valid_loss = None

        self.OUT_OF_RANGE = False

        self.model = None
        self.optimizer = None
        self.ema = None
        self.train_loss = None
        self.train_accuracy = None
        self.test_loss = None
        self.test_accuracy = None
        self.test_auc = None
        self.test_recall = None
        self.test_precision = None
        self.test_confusion_matrix = None
        self.test_true_pos = None
        self.test_true_neg = None
        self.test_false_pos = None
        self.test_false_neg = None

        self.test_labels = []
        self.test_preds = []
        self.test_probs = None
        self.test_input = []
        self.test_cat_cf = []

        self.learningRateSchedule = None
        self.num_data_samples = None
        self.initial_learning_rate = None

        self.data_dct = None
        self.train_data_files = None
        self.train_label_files = None
        self.test_data_files = None
        self.test_label_files = None

        # self.n_chans = len(data_params_half) + len(data_params_full) + 1
        self.n_chans = 6

        # Testing/Evaluation mode
        # self.X_img = tf.keras.Input(shape=(None, None, self.n_chans + 2))
        self.X_img = tf.keras.Input(shape=(None, None, self.n_chans))

        self.inputs.append(self.X_img)

        tf.debugging.set_log_device_placement(LOG_DEVICE_PLACEMENT)

    def get_in_mem_data_batch(self, idxs, is_training):
        if is_training:
            data_files = self.train_data_files
            label_files = self.train_label_files
        else:
            data_files = self.test_data_files
            label_files = self.test_label_files

        data_s = []
        label_s = []
        for k in idxs:
            f = data_files[k]
            nda = np.load(f)
            data_s.append(nda)

            f = label_files[k]
            nda = np.load(f)
            label_s.append(nda)
        input_data = np.concatenate(data_s)
        input_label = np.concatenate(label_s)

        # refl_i = input_label[:, params_i.index('refl_0_65um_nom'), :, :]
        # rlo, rhi, rstd, rmean = get_min_max_std(refl_i)
        # rmean = rmean[:, slc_y, slc_x]
        # rmean = scale2(rmean, -2.0, 120.0)
        # rlo = rlo[:, slc_y, slc_x]
        # rlo = scale2(rlo, -2.0, 120.0)
        # rhi = rhi[:, slc_y, slc_x]
        # rhi = scale2(rhi, -2.0, 120.0)
        # refl_rng = rhi - rlo
        # rstd = rstd[:, slc_y, slc_x]
        # rstd = scale2(rstd, 0.0, 20.0)

        data_norm = []
        # for param in data_params_half:
        #     idx = params.index(param)
        #     tmp = input_data[:, idx, :, :]
        #     tmp = tmp[:, slc_y, slc_x]
        #     # tmp = normalize(tmp, param, mean_std_dct)
        #     tmp = scale(tmp, param, mean_std_dct)
        #     data_norm.append(tmp)
            
        bt = input_data[:, params.index('temp_11_0um_nom'), :, :]
        bt = bt[:, slc_y, slc_x]
        # bt = normalize(bt, 'temp_11_0um_nom', mean_std_dct)
        bt = scale(bt, 'temp_11_0um_nom', mean_std_dct)
        data_norm.append(bt)

        tmp = input_label[:, params_i.index('cloud_probability'), :, :]
        cld_prob = tmp.copy()
        tmp = get_grid_cell_mean(tmp)
        tmp = tmp[:, slc_y, slc_x]
        data_norm.append(tmp)

        refl = input_data[:, params.index('refl_0_65um_nom'), :, :]
        refl = refl[:, slc_y, slc_x]
        # refl = normalize(refl, 'refl_0_65um_nom', mean_std_dct)
        refl = scale(refl, 'refl_0_65um_nom', mean_std_dct)
        data_norm.append(refl)

        # for param in sub_fields:
        #     idx = params.index(param)
        #     tmp = input_data[:, idx, :, :]
        #     tmp = tmp[:, slc_y, slc_x]
        #     if param != 'refl_substddev_ch01':
        #         # tmp = normalize(tmp, 'refl_0_65um_nom', mean_std_dct)
        #         tmp = scale(tmp, 'refl_0_65um_nom', mean_std_dct)
        #     else:
        #         # tmp = np.where(np.isnan(tmp), 0, tmp)
        #         tmp = scale2(tmp, 0.0, 20.0)
        #     data_norm.append(tmp)

        refl_lo = input_data[:, params.index(sub_fields[0]), :, :]
        refl_lo = refl_lo[:, slc_y, slc_x]
        refl_lo = scale2(refl_lo, -2.0, 120.0)

        refl_hi = input_data[:, params.index(sub_fields[1]), :, :]
        refl_hi = refl_hi[:, slc_y, slc_x]
        refl_hi = scale2(refl_hi, -2.0, 120.0)

        refl_rng = refl_hi - refl_lo
        data_norm.append(refl_rng)

        refl_std = input_data[:, params.index(sub_fields[2]), :, :]
        refl_std = refl_std[:, slc_y, slc_x]
        refl_std = scale2(refl_std, 0.0, 30.0)
        data_norm.append(refl_std)

        tmp = input_label[:, label_idx_i, :, :]
        tmp = get_grid_cell_mean(tmp)
        tmp = scale(tmp, label_param, mean_std_dct)
        tmp = tmp[:, slc_y, slc_x]
        data_norm.append(tmp)
        # ---------
        # data = np.stack(data_norm, axis=3)
        # data = data.astype(np.float32)

        # -----------------------------------------------------
        # -----------------------------------------------------
        label = input_label[:, label_idx_i, :, :]
        label = label[:, y_64, x_64]
        cld_prob = cld_prob[:, y_64, x_64]
        cat_cf = get_label_data_5cat(cld_prob)
        _, _, cp_std, _ = get_min_max_std(cld_prob)
        if KERNEL_SIZE != 1:
            cat_cf = np.pad(cat_cf, pad_width=[(0, 0), (1, 1), (1, 1)])
            cp_std = np.pad(cp_std, pad_width=[(0, 0), (1, 1), (1, 1)])
        data_norm.append(cat_cf)
        data_norm.append(cp_std)
        data = np.stack(data_norm, axis=3)

        label = get_cldy_frac_opd(cld_prob, label)
        # label = scale(label, label_param, mean_std_dct)
        label = np.where(np.isnan(label), 0, label)
        label = np.expand_dims(label, axis=3)

        data = data.astype(np.float32)
        label = label.astype(np.float32)

        # if is_training and DO_AUGMENT:
        #     data_ud = np.flip(data, axis=1)
        #     label_ud = np.flip(label, axis=1)
        #
        #     data_lr = np.flip(data, axis=2)
        #     label_lr = np.flip(label, axis=2)
        #
        #     data = np.concatenate([data, data_ud, data_lr])
        #     label = np.concatenate([label, label_ud, label_lr])

        return data, label

    def get_in_mem_data_batch_train(self, idxs):
        return self.get_in_mem_data_batch(idxs, True)

    def get_in_mem_data_batch_test(self, idxs):
        return self.get_in_mem_data_batch(idxs, False)

    @tf.function(input_signature=[tf.TensorSpec(None, tf.int32)])
    def data_function(self, indexes):
        out = tf.numpy_function(self.get_in_mem_data_batch_train, [indexes], [tf.float32, tf.float32])
        return out

    @tf.function(input_signature=[tf.TensorSpec(None, tf.int32)])
    def data_function_test(self, indexes):
        out = tf.numpy_function(self.get_in_mem_data_batch_test, [indexes], [tf.float32, tf.float32])
        return out

    def get_train_dataset(self, num_files):
        def integer_gen(limit):
            n = 0
            while n < limit:
                yield n
                n += 1
        num_gen = integer_gen(num_files)
        gen = make_tf_callable_generator(num_gen)

        dataset = tf.data.Dataset.from_generator(gen, output_types=tf.int32)
        dataset = dataset.batch(PROC_BATCH_SIZE)
        dataset = dataset.map(self.data_function, num_parallel_calls=8)
        dataset = dataset.cache(filename=CACHE_FILE)
        dataset = dataset.shuffle(1, reshuffle_each_iteration=True)
        if DO_AUGMENT:
            dataset = dataset.map(augment_image(), num_parallel_calls=8)
        dataset = dataset.prefetch(buffer_size=1)
        self.train_dataset = dataset

    def get_test_dataset(self, num_files):
        def integer_gen(limit):
            n = 0
            while n < limit:
                yield n
                n += 1
        num_gen = integer_gen(num_files)
        gen = make_tf_callable_generator(num_gen)

        dataset = tf.data.Dataset.from_generator(gen, output_types=tf.int32)
        dataset = dataset.batch(PROC_BATCH_SIZE)
        dataset = dataset.map(self.data_function_test, num_parallel_calls=8)
        dataset = dataset.cache()
        self.test_dataset = dataset

    def setup_pipeline(self, train_data_files, train_label_files, test_data_files, test_label_files, num_train_samples):
        self.train_data_files = train_data_files
        self.train_label_files = train_label_files
        self.test_data_files = test_data_files
        self.test_label_files = test_label_files

        self.get_train_dataset(len(train_data_files))
        self.get_test_dataset(len(test_data_files))

        self.num_data_samples = num_train_samples  # approximately

        print('datetime: ', now)
        print('training and test data: ')
        print('---------------------------')
        print('num train files: ', len(train_data_files))
        print('BATCH SIZE: ', BATCH_SIZE)
        print('num test files: ', len(test_data_files))
        print('setup_pipeline: Done')

    def setup_test_pipeline(self, test_data_files, test_label_files):
        self.test_data_files = test_data_files
        self.test_label_files = test_label_files
        self.get_test_dataset(len(test_data_files))
        print('setup_test_pipeline: Done')

    def build_srcnn(self, do_drop_out=False, do_batch_norm=False, drop_rate=0.5, factor=2):
        print('build_cnn')
        padding = "SAME"

        # activation = tf.nn.relu
        # activation = tf.nn.elu
        activation = tf.nn.relu
        momentum = 0.99

        num_filters = 64

        input_2d = self.inputs[0]
        input_2d = input_2d[:, :, :, 0:self.n_chans]
        print('input: ', input_2d.shape)

        conv = conv_b = tf.keras.layers.Conv2D(num_filters, kernel_size=KERNEL_SIZE, kernel_initializer='he_uniform', activation=activation, padding='VALID')(input_2d)
        print(conv.shape)

        # if NOISE_TRAINING:
        #     conv = conv_b = tf.keras.layers.GaussianNoise(stddev=NOISE_STDDEV)(conv)

        scale = 0.2

        conv_b = build_residual_conv2d_block(conv_b, num_filters, 'Residual_Block_1', kernel_size=KERNEL_SIZE, scale=scale)

        conv_b = build_residual_conv2d_block(conv_b, num_filters, 'Residual_Block_2', kernel_size=KERNEL_SIZE, scale=scale)

        conv_b = build_residual_conv2d_block(conv_b, num_filters, 'Residual_Block_3', kernel_size=KERNEL_SIZE, scale=scale)

        conv_b = build_residual_conv2d_block(conv_b, num_filters, 'Residual_Block_4', kernel_size=KERNEL_SIZE, scale=scale)

        conv_b = build_residual_conv2d_block(conv_b, num_filters, 'Residual_Block_5', kernel_size=KERNEL_SIZE, scale=scale)

        conv_b = build_residual_conv2d_block(conv_b, num_filters, 'Residual_Block_6', kernel_size=KERNEL_SIZE, scale=scale)

        conv_b = tf.keras.layers.Conv2D(num_filters, kernel_size=KERNEL_SIZE, strides=1, activation=activation, kernel_initializer='he_uniform', padding=padding)(conv_b)

        # conv = conv + conv_b
        conv = conv_b
        print(conv.shape)

        # This is effectively a Dense layer
        self.logits = tf.keras.layers.Conv2D(1, kernel_size=1, strides=1, padding=padding, name='regression')(conv)
        print(self.logits.shape)

    def build_training(self):

        # self.loss = tf.keras.losses.MeanSquaredError()  # Regression
        self.loss = tf.keras.losses.MeanAbsoluteError()  # Regression

        # decayed_learning_rate = learning_rate * decay_rate ^ (global_step / decay_steps)
        initial_learning_rate = 0.001
        decay_rate = 0.95
        steps_per_epoch = int(self.num_data_samples/BATCH_SIZE)  # one epoch
        decay_steps = int(steps_per_epoch) * 2
        print('initial rate, decay rate, steps/epoch, decay steps: ', initial_learning_rate, decay_rate, steps_per_epoch, decay_steps)

        self.learningRateSchedule = tf.keras.optimizers.schedules.ExponentialDecay(initial_learning_rate, decay_steps, decay_rate)

        optimizer = tf.keras.optimizers.Adam(learning_rate=self.learningRateSchedule,
                                             beta_1=BETA_1, beta_2=BETA_2,
                                             use_ema=USE_EMA,
                                             ema_momentum=EMA_MOMENTUM,
                                             ema_overwrite_frequency=EMA_OVERWRITE_FREQUENCY)

        self.optimizer = optimizer
        self.initial_learning_rate = initial_learning_rate

    def build_evaluation(self):
        self.train_accuracy = tf.keras.metrics.MeanAbsoluteError(name='train_accuracy')
        self.test_accuracy = tf.keras.metrics.MeanAbsoluteError(name='test_accuracy')
        self.train_loss = tf.keras.metrics.Mean(name='train_loss')
        self.test_loss = tf.keras.metrics.Mean(name='test_loss')

    @tf.function(input_signature=[tf.TensorSpec(None, tf.float32), tf.TensorSpec(None, tf.float32)])
    def train_step(self, inputs, labels):
        labels = tf.squeeze(labels, axis=[3])
        with tf.GradientTape() as tape:
            pred = self.model([inputs], training=True)
            loss = self.loss(labels, pred)
            total_loss = loss
            if len(self.model.losses) > 0:
                reg_loss = tf.math.add_n(self.model.losses)
                total_loss = loss + reg_loss
        gradients = tape.gradient(total_loss, self.model.trainable_variables)
        self.optimizer.apply_gradients(zip(gradients, self.model.trainable_variables))

        self.train_loss(loss)
        self.train_accuracy(labels, pred)

        return loss

    @tf.function(input_signature=[tf.TensorSpec(None, tf.float32), tf.TensorSpec(None, tf.float32)])
    def test_step(self, inputs, labels):
        labels = tf.squeeze(labels, axis=[3])
        pred = self.model([inputs], training=False)
        t_loss = self.loss(labels, pred)

        self.test_loss(t_loss)
        self.test_accuracy(labels, pred)

    # @tf.function(input_signature=[tf.TensorSpec(None, tf.float32), tf.TensorSpec(None, tf.float32)])
    # decorator commented out because pred.numpy(): pred not evaluated yet.
    def predict(self, inputs, labels):
        pred = self.model([inputs], training=False)
        # t_loss = self.loss(tf.squeeze(labels, axis=[3]), pred)
        t_loss = self.loss(labels, pred)

        self.test_labels.append(labels)
        self.test_preds.append(pred.numpy())
        self.test_input.append(inputs)
        self.test_cat_cf.append(inputs[:, :, :, self.n_chans])

        self.test_loss(t_loss)
        self.test_accuracy(labels, pred)

    def reset_test_metrics(self):
        self.test_loss.reset_states()
        self.test_accuracy.reset_states()

    def get_metrics(self):
        recall = self.test_recall.result()
        precsn = self.test_precision.result()
        f1 = 2 * (precsn * recall) / (precsn + recall)

        tn = self.test_true_neg.result()
        tp = self.test_true_pos.result()
        fn = self.test_false_neg.result()
        fp = self.test_false_pos.result()

        mcc = ((tp * tn) - (fp * fn)) / np.sqrt((tp + fp) * (tp + fn) * (tn + fp) * (tn + fn))
        return f1, mcc

    def do_training(self, ckpt_dir=None):

        if ckpt_dir is None:
            if not os.path.exists(modeldir):
                os.mkdir(modeldir)
            ckpt = tf.train.Checkpoint(step=tf.Variable(1), model=self.model)
            ckpt_manager = tf.train.CheckpointManager(ckpt, modeldir, max_to_keep=3)
        else:
            ckpt = tf.train.Checkpoint(step=tf.Variable(1), model=self.model)
            ckpt_manager = tf.train.CheckpointManager(ckpt, ckpt_dir, max_to_keep=3)
            ckpt.restore(ckpt_manager.latest_checkpoint)

        self.writer_train = tf.summary.create_file_writer(os.path.join(logdir, 'plot_train'))
        self.writer_valid = tf.summary.create_file_writer(os.path.join(logdir, 'plot_valid'))
        self.writer_train_valid_loss = tf.summary.create_file_writer(os.path.join(logdir, 'plot_train_valid_loss'))

        step = 0
        total_time = 0
        best_test_loss = np.finfo(dtype=np.float64).max

        if EARLY_STOP:
            es = EarlyStop(patience=PATIENCE)

        for epoch in range(NUM_EPOCHS):
            self.train_loss.reset_states()
            self.train_accuracy.reset_states()

            t0 = datetime.datetime.now().timestamp()

            proc_batch_cnt = 0
            n_samples = 0

            for data, label in self.train_dataset:
                trn_ds = tf.data.Dataset.from_tensor_slices((data, label))
                trn_ds = trn_ds.batch(BATCH_SIZE)
                for mini_batch in trn_ds:
                    if self.learningRateSchedule is not None:
                        loss = self.train_step(mini_batch[0], mini_batch[1])

                    if (step % 100) == 0:

                        with self.writer_train.as_default():
                            tf.summary.scalar('loss_trn', loss.numpy(), step=step)
                            tf.summary.scalar('learning_rate', self.optimizer.lr.numpy(), step=step)
                            tf.summary.scalar('num_train_steps', step, step=step)
                            tf.summary.scalar('num_epochs', epoch, step=step)

                        self.reset_test_metrics()
                        for data_tst, label_tst in self.test_dataset:
                            tst_ds = tf.data.Dataset.from_tensor_slices((data_tst, label_tst))
                            tst_ds = tst_ds.batch(BATCH_SIZE)
                            for mini_batch_test in tst_ds:
                                self.test_step(mini_batch_test[0], mini_batch_test[1])

                        with self.writer_valid.as_default():
                            tf.summary.scalar('loss_val', self.test_loss.result(), step=step)
                            tf.summary.scalar('acc_val', self.test_accuracy.result(), step=step)

                        with self.writer_train_valid_loss.as_default():
                            tf.summary.scalar('loss_trn', loss.numpy(), step=step)
                            tf.summary.scalar('loss_val', self.test_loss.result(), step=step)

                        print('****** test loss, acc, lr: ', self.test_loss.result().numpy(), self.test_accuracy.result().numpy(),
                              self.optimizer.lr.numpy())

                    step += 1
                    print('train loss: ', loss.numpy())

                proc_batch_cnt += 1
                n_samples += data.shape[0]
                print('proc_batch_cnt: ', proc_batch_cnt, n_samples)

            t1 = datetime.datetime.now().timestamp()
            print('End of Epoch: ', epoch+1, 'elapsed time: ', (t1-t0))
            total_time += (t1-t0)

            self.reset_test_metrics()
            for data, label in self.test_dataset:
                ds = tf.data.Dataset.from_tensor_slices((data, label))
                ds = ds.batch(BATCH_SIZE)
                for mini_batch in ds:
                    self.test_step(mini_batch[0], mini_batch[1])

            print('loss, acc: ', self.test_loss.result().numpy(), self.test_accuracy.result().numpy())
            print('------------------------------------------------------')

            tst_loss = self.test_loss.result().numpy()
            if tst_loss < best_test_loss:
                best_test_loss = tst_loss
                ckpt_manager.save()

            if EARLY_STOP and es.check_stop(tst_loss):
                break

        print('total time: ', total_time)
        self.writer_train.close()
        self.writer_valid.close()
        self.writer_train_valid_loss.close()

    def build_model(self):
        with options({'layout': False}):
            print(tf.config.optimizer.get_experimental_options())
            self.build_srcnn()
            self.model = tf.keras.Model(self.inputs, self.logits)

    def restore(self, ckpt_dir):

        ckpt = tf.train.Checkpoint(step=tf.Variable(1), model=self.model)
        ckpt_manager = tf.train.CheckpointManager(ckpt, ckpt_dir, max_to_keep=3)
        ckpt.restore(ckpt_manager.latest_checkpoint)

        self.reset_test_metrics()

        for data, label in self.test_dataset:
            ds = tf.data.Dataset.from_tensor_slices((data, label))
            ds = ds.batch(BATCH_SIZE)
            for mini_batch_test in ds:
                self.predict(mini_batch_test[0], mini_batch_test[1])

        print('loss, acc: ', self.test_loss.result().numpy(), self.test_accuracy.result().numpy())

        labels = np.concatenate(self.test_labels)
        preds = np.concatenate(self.test_preds)
        inputs = np.concatenate(self.test_input)

        # labels = denormalize(labels, label_param, mean_std_dct)
        # preds = denormalize(preds, label_param, mean_std_dct)
        # labels = descale(labels, label_param, mean_std_dct)
        # preds = descale(preds, label_param, mean_std_dct)

        return labels, preds, inputs

    def do_evaluate(self, inputs, ckpt_dir):

        ckpt = tf.train.Checkpoint(step=tf.Variable(1), model=self.model)
        ckpt_manager = tf.train.CheckpointManager(ckpt, ckpt_dir, max_to_keep=3)
        ckpt.restore(ckpt_manager.latest_checkpoint)

        self.reset_test_metrics()

        pred = self.model([inputs], training=False)
        self.test_probs = pred
        pred = pred.numpy()

        return pred

    def run(self, directory, ckpt_dir=None, num_data_samples=50000):
        train_data_files = glob.glob(directory+'train*mres*.npy')
        valid_data_files = glob.glob(directory+'valid*mres*.npy')
        train_label_files = glob.glob(directory+'train*ires*.npy')
        valid_label_files = glob.glob(directory+'valid*ires*.npy')
        self.setup_pipeline(train_data_files, train_label_files, valid_data_files, valid_label_files, num_data_samples)

        self.build_model()
        self.build_training()
        self.build_evaluation()
        self.do_training(ckpt_dir=ckpt_dir)

    def run_restore(self, directory, ckpt_dir):
        self.num_data_samples = 1000

        valid_data_files = glob.glob(directory + 'valid*mres*.npy')
        valid_label_files = [f.replace('mres', 'ires') for f in valid_data_files]
        self.setup_test_pipeline(valid_data_files, valid_label_files)

        self.build_model()
        self.build_training()
        self.build_evaluation()
        return self.restore(ckpt_dir)

    def run_evaluate(self, data, ckpt_dir):
        # data = tf.convert_to_tensor(data, dtype=tf.float32)
        self.num_data_samples = 80000
        self.build_model()
        self.build_training()
        self.build_evaluation()
        return self.do_evaluate(data, ckpt_dir)

    def setup_inference(self, ckpt_dir):
        self.num_data_samples = 80000
        self.build_model()
        self.build_training()
        self.build_evaluation()

        ckpt = tf.train.Checkpoint(step=tf.Variable(1), model=self.model)
        ckpt_manager = tf.train.CheckpointManager(ckpt, ckpt_dir, max_to_keep=3)
        ckpt.restore(ckpt_manager.latest_checkpoint)

    def do_inference(self, inputs):
        self.reset_test_metrics()

        pred = self.model([inputs], training=False)
        self.test_probs = pred
        pred = pred.numpy()

        return pred

    def run_inference(self, in_file, out_file):
        gc.collect()

        h5f = h5py.File(in_file, 'r')

        bt = get_grid_values_all(h5f, 'temp_11_0um_nom')
        y_len, x_len = bt.shape
        refl = get_grid_values_all(h5f, 'refl_0_65um_nom')
        refl_lo = get_grid_values_all(h5f, 'refl_0_65um_nom_min_sub')
        refl_hi = get_grid_values_all(h5f, 'refl_0_65um_nom_max_sub')
        refl_std = get_grid_values_all(h5f, 'refl_0_65um_nom_stddev_sub')
        cp = get_grid_values_all(h5f, 'cloud_probability')
        opd = get_grid_values_all(h5f, label_param)

        cldy_frac_opd = self.run_inference_(bt, refl, refl_lo, refl_hi, refl_std, cp, opd)

        cldy_frac_opd_out = np.full((y_len, x_len), -1.0, dtype=np.float32)
        border = int((KERNEL_SIZE - 1) / 2)
        cldy_frac_opd_out[border:y_len - border, border:x_len - border] = cldy_frac_opd[0, :, :, 0]

        # Use this hack for now.
        off_earth = (bt <= 161.0)
        night = np.isnan(refl)
        cldy_frac_opd_out[off_earth] = -1
        cldy_frac_opd_out[np.invert(off_earth) & night] = -1

        # ---  Make a DataArray ----------------------------------------------------
        # var_names = ['cloud_fraction', 'temp_11_0um', 'refl_0_65um']
        # dims = ['num_params', 'y', 'x']
        # da = xr.DataArray(np.stack([cld_frac_out, bt, refl], axis=0), dims=dims)
        # da.assign_coords({
        #     'num_params': var_names,
        #     'lat': (['y', 'x'], lats),
        #     'lon': (['y', 'x'], lons)
        # })
        # ---------------------------------------------------------------------------

        h5f.close()

        if out_file is not None:
            np.save(out_file, (cldy_frac_opd_out, bt, refl, cp))
        else:
            # return [cld_frac_out, bt, refl, cp, lons, lats]
            return cldy_frac_opd_out, opd

    def run_inference_full_disk(self, in_file, out_file):
        gc.collect()

        t0 = time.time()
        h5f = h5py.File(in_file, 'r')

        bt = get_grid_values_all(h5f, 'temp_11_0um_nom')
        y_len, x_len = bt.shape
        h_y_len = int(y_len / 2)
        refl = get_grid_values_all(h5f, 'refl_0_65um_nom')
        refl_lo = get_grid_values_all(h5f, 'refl_0_65um_nom_min_sub')
        refl_hi = get_grid_values_all(h5f, 'refl_0_65um_nom_max_sub')
        refl_std = get_grid_values_all(h5f, 'refl_0_65um_nom_stddev_sub')
        cp = get_grid_values_all(h5f, 'cloud_probability')
        opd = get_grid_values_all(h5f, label_param)
        t1 = time.time()
        print('   read time:', (t1-t0))

        bt_nh = bt[0:h_y_len + 1, :]
        refl_nh = refl[0:h_y_len + 1, :]
        refl_lo_nh = refl_lo[0:h_y_len + 1, :]
        refl_hi_nh = refl_hi[0:h_y_len + 1, :]
        refl_std_nh = refl_std[0:h_y_len + 1, :]
        cp_nh = cp[0:h_y_len + 1, :]
        opd_nh = opd[0:h_y_len + 1, :]

        bt_sh = bt[h_y_len - 1:y_len, :]
        refl_sh = refl[h_y_len - 1:y_len, :]
        refl_lo_sh = refl_lo[h_y_len - 1:y_len, :]
        refl_hi_sh = refl_hi[h_y_len - 1:y_len, :]
        refl_std_sh = refl_std[h_y_len - 1:y_len, :]
        cp_sh = cp[h_y_len - 1:y_len, :]
        opd_sh = opd[h_y_len - 1:y_len, :]

        t0 = time.time()
        cldy_frac_opd_nh = self.run_inference_(bt_nh, refl_nh, refl_lo_nh, refl_hi_nh, refl_std_nh, cp_nh, opd_nh)
        cldy_frac_opd_sh = self.run_inference_(bt_sh, refl_sh, refl_lo_sh, refl_hi_sh, refl_std_sh, cp_sh, opd_sh)
        t1 = time.time()
        print('   inference time: ', (t1-t0))

        cldy_frac_opd_out = np.full((y_len, x_len), -1.0, dtype=np.float32)
        border = int((KERNEL_SIZE - 1) / 2)
        cldy_frac_opd_out[border:h_y_len, border:x_len - border] = cldy_frac_opd_nh[0, :, :, 0]
        cldy_frac_opd_out[h_y_len:y_len - border, border:x_len - border] = cldy_frac_opd_sh[0, :, :, 0]

        # Use this hack for now.
        off_earth = (bt <= 161.0)
        night = np.isnan(refl)
        cldy_frac_opd_out[off_earth] = -1.0
        cldy_frac_opd_out[np.invert(off_earth) & night] = -1.0

        # ---   Make DataArray -------------------------------------------------
        # var_names = ['cloud_fraction', 'temp_11_0um', 'refl_0_65um']
        # dims = ['num_params', 'y', 'x']
        # da = xr.DataArray(np.stack([cld_frac_out, bt, refl], axis=0), dims=dims)
        # da.assign_coords({
        #     'num_params': var_names,
        #     'lat': (['y', 'x'], lats),
        #     'lon': (['y', 'x'], lons)
        # })
        # ------------------------------------------------------------------------

        h5f.close()

        if out_file is not None:
            np.save(out_file, (cldy_frac_opd_out, bt, refl, cp))
        else:
            # return [cld_frac_out, bt, refl, cp, lons, lats]
            return cldy_frac_opd_out, opd

    def run_inference_(self, bt, refl, refl_lo, refl_hi, refl_std, cp, opd):
        bt = scale(bt, 'temp_11_0um_nom', mean_std_dct)
        refl = scale(refl, 'refl_0_65um_nom', mean_std_dct)
        refl_lo = scale(refl_lo, 'refl_0_65um_nom', mean_std_dct)
        refl_hi = scale(refl_hi, 'refl_0_65um_nom', mean_std_dct)
        refl_rng = refl_hi - refl_lo
        refl_std = scale2(refl_std, 0.0, 30.0)
        cp = np.where(np.isnan(cp), 0, cp)
        opd = scale(opd, label_param, mean_std_dct)

        data = np.stack([bt, cp, refl, refl_rng, refl_std, opd], axis=2)
        data = np.expand_dims(data, axis=0)
        opd = self.do_inference(data)

        return opd


def run_restore_static(directory, ckpt_dir, out_file=None):
    nn = SRCNN()
    labels, preds, inputs = nn.run_restore(directory, ckpt_dir)
    print(np.histogram(labels))
    print(np.histogram(preds))
    if out_file is not None:
        y_hi, x_hi = (Y_LEN // 4) + 1, (X_LEN // 4) + 1
        np.save(out_file,
                [labels[:, :, :, 0],
                 preds[:, :, :, 0],
                 descale(inputs[:, 1:y_hi, 1:x_hi, 0], 'temp_11_0um_nom', mean_std_dct),
                 inputs[:, 1:y_hi, 1:x_hi, 1],
                 descale(inputs[:, 1:y_hi, 1:x_hi, 2], 'refl_0_65um_nom', mean_std_dct),
                 descale(inputs[:, 1:y_hi, 1:x_hi, 3], 'refl_0_65um_nom', mean_std_dct),
                 inputs[:, 1:y_hi, 1:x_hi, 4],
                 descale(inputs[:, 1:y_hi, 1:x_hi, 5], label_param, mean_std_dct),
                 inputs[:, 1:y_hi, 1:x_hi, 6],
                 inputs[:, 1:y_hi, 1:x_hi, 7]])


def run_evaluate_static(in_file, out_file, ckpt_dir):
    gc.collect()

    h5f = h5py.File(in_file, 'r')

    bt = get_grid_values_all(h5f, 'temp_11_0um_nom')
    y_len, x_len = bt.shape
    refl = get_grid_values_all(h5f, 'refl_0_65um_nom')
    refl_lo = get_grid_values_all(h5f, 'refl_0_65um_nom_min_sub')
    refl_hi = get_grid_values_all(h5f, 'refl_0_65um_nom_max_sub')
    refl_std = get_grid_values_all(h5f, 'refl_0_65um_nom_stddev_sub')
    cp = get_grid_values_all(h5f, label_param)
    # lons = get_grid_values_all(h5f, 'longitude')
    # lats = get_grid_values_all(h5f, 'latitude')

    cld_frac = run_evaluate_static_(bt, refl, refl_lo, refl_hi, refl_std, cp, ckpt_dir)

    cld_frac_out = np.zeros((y_len, x_len), dtype=np.int8)
    border = int((KERNEL_SIZE - 1)/2)
    cld_frac_out[border:y_len-border, border:x_len - border] = cld_frac[0, :, :]

    # Use this hack for now.
    off_earth = (bt <= 161.0)
    night = np.isnan(refl)
    cld_frac_out[off_earth] = -1
    cld_frac_out[np.invert(off_earth) & night] = -1

    # ---  Make a DataArray ----------------------------------------------------
    # var_names = ['cloud_fraction', 'temp_11_0um', 'refl_0_65um']
    # dims = ['num_params', 'y', 'x']
    # da = xr.DataArray(np.stack([cld_frac_out, bt, refl], axis=0), dims=dims)
    # da.assign_coords({
    #     'num_params': var_names,
    #     'lat': (['y', 'x'], lats),
    #     'lon': (['y', 'x'], lons)
    # })
    # ---------------------------------------------------------------------------

    h5f.close()

    if out_file is not None:
        np.save(out_file, (cld_frac_out, bt, refl, cp))
    else:
        # return [cld_frac_out, bt, refl, cp, lons, lats]
        return cld_frac_out


def run_evaluate_static_full_disk(in_file, out_file, ckpt_dir):
    gc.collect()

    h5f = h5py.File(in_file, 'r')

    bt = get_grid_values_all(h5f, 'temp_11_0um_nom')
    y_len, x_len = bt.shape
    h_y_len = int(y_len/2)
    refl = get_grid_values_all(h5f, 'refl_0_65um_nom')
    refl_lo = get_grid_values_all(h5f, 'refl_0_65um_nom_min_sub')
    refl_hi = get_grid_values_all(h5f, 'refl_0_65um_nom_max_sub')
    refl_std = get_grid_values_all(h5f, 'refl_0_65um_nom_stddev_sub')
    cp = get_grid_values_all(h5f, label_param)
    # lons = get_grid_values_all(h5f, 'longitude')
    # lats = get_grid_values_all(h5f, 'latitude')

    bt_nh = bt[0:h_y_len+1, :]
    refl_nh = refl[0:h_y_len+1, :]
    refl_lo_nh = refl_lo[0:h_y_len+1, :]
    refl_hi_nh = refl_hi[0:h_y_len+1, :]
    refl_std_nh = refl_std[0:h_y_len+1, :]
    cp_nh = cp[0:h_y_len+1, :]

    bt_sh = bt[h_y_len-1:y_len, :]
    refl_sh = refl[h_y_len-1:y_len, :]
    refl_lo_sh = refl_lo[h_y_len-1:y_len, :]
    refl_hi_sh = refl_hi[h_y_len-1:y_len, :]
    refl_std_sh = refl_std[h_y_len-1:y_len, :]
    cp_sh = cp[h_y_len-1:y_len, :]

    cld_frac_nh = run_evaluate_static_(bt_nh, refl_nh, refl_lo_nh, refl_hi_nh, refl_std_nh, cp_nh, ckpt_dir)

    cld_frac_sh = run_evaluate_static_(bt_sh, refl_sh, refl_lo_sh, refl_hi_sh, refl_std_sh, cp_sh, ckpt_dir)

    cld_frac_out = np.zeros((y_len, x_len), dtype=np.int8)
    border = int((KERNEL_SIZE - 1)/2)
    cld_frac_out[border:h_y_len, border:x_len - border] = cld_frac_nh[0, :, :]
    cld_frac_out[h_y_len:y_len - border, border:x_len - border] = cld_frac_sh[0, :, :]

    # Use this hack for now.
    off_earth = (bt <= 161.0)
    night = np.isnan(refl)
    cld_frac_out[off_earth] = -1
    cld_frac_out[np.invert(off_earth) & night] = -1

    # ---   Make DataArray -------------------------------------------------
    # var_names = ['cloud_fraction', 'temp_11_0um', 'refl_0_65um']
    # dims = ['num_params', 'y', 'x']
    # da = xr.DataArray(np.stack([cld_frac_out, bt, refl], axis=0), dims=dims)
    # da.assign_coords({
    #     'num_params': var_names,
    #     'lat': (['y', 'x'], lats),
    #     'lon': (['y', 'x'], lons)
    # })
    # ------------------------------------------------------------------------

    h5f.close()

    if out_file is not None:
        np.save(out_file, (cld_frac_out, bt, refl, cp))
    else:
        # return [cld_frac_out, bt, refl, cp, lons, lats]
        return cld_frac_out


def run_evaluate_static_valid(in_file, out_file, ckpt_dir):
    gc.collect()

    h5f = h5py.File(in_file, 'r')

    bt = get_grid_values_all(h5f, 'orig/temp_ch38')
    y_len, x_len = bt.shape
    refl = get_grid_values_all(h5f, 'orig/refl_ch01')
    refl_lo = get_grid_values_all(h5f, 'orig/refl_submin_ch01')
    refl_hi = get_grid_values_all(h5f, 'orig/refl_submax_ch01')
    refl_std = get_grid_values_all(h5f, 'orig/refl_substddev_ch01')
    cp = get_grid_values_all(h5f, 'orig/'+label_param)
    lons = get_grid_values_all(h5f, 'orig/longitude')
    lats = get_grid_values_all(h5f, 'orig/latitude')
    cp_sres = get_grid_values_all(h5f, 'super/'+label_param)

    mean_cp_sres = get_grid_cell_mean(np.expand_dims(cp_sres, axis=0))[0]
    # cld_frac_truth = get_label_data_5cat(np.expand_dims(cp_sres, axis=0))[0]
    cld_frac_truth = None

    h5f.close()

    cld_frac = run_evaluate_static_(bt, refl, refl_lo, refl_hi, refl_std, cp, ckpt_dir)

    cld_frac_out = np.zeros((y_len, x_len), dtype=np.int8)
    border = int((KERNEL_SIZE - 1)/2)
    cld_frac_out[border:y_len-border, border:x_len - border] = cld_frac[0, :, :]

    var_names = ['cloud_fraction', 'temp_11_0um', 'refl_0_65um']
    dims = ['num_params', 'y', 'x']
    da = xr.DataArray(np.stack([cld_frac_out, bt, refl], axis=0), dims=dims)
    da.assign_coords({
        'num_params': var_names,
        'lat': (['y', 'x'], lats),
        'lon': (['y', 'x'], lons)
    })

    if out_file is not None:
        np.save(out_file, (cld_frac_out, bt, refl, cp, lons, lats, mean_cp_sres, cld_frac_truth))
    else:
        return [cld_frac_out, bt, refl, cp, lons, lats]


def run_evaluate_static_(bt, refl, refl_lo, refl_hi, refl_std, cp, ckpt_dir):
    bt = normalize(bt, 'temp_11_0um_nom', mean_std_dct)
    refl = normalize(refl, 'refl_0_65um_nom', mean_std_dct)
    refl_lo = normalize(refl_lo, 'refl_0_65um_nom', mean_std_dct)
    refl_hi = normalize(refl_hi, 'refl_0_65um_nom', mean_std_dct)
    refl_std = np.where(np.isnan(refl_std), 0, refl_std)
    cp = np.where(np.isnan(cp), 0, cp)

    data = np.stack([bt, refl, refl_lo, refl_hi, refl_std, cp], axis=2)
    data = np.expand_dims(data, axis=0)
    nn = SRCNN()
    probs = nn.run_evaluate(data, ckpt_dir)
    cld_frac = probs.argmax(axis=3)
    cld_frac = cld_frac.astype(np.int8)

    return cld_frac


def analyze(directory, outfile):
    train_data_files = glob.glob(directory + 'train*mres*.npy')
    valid_data_files = glob.glob(directory + 'valid*mres*.npy')
    train_label_files = glob.glob(directory + 'train*ires*.npy')
    valid_label_files = glob.glob(directory + 'valid*ires*.npy')

    data_s = []
    label_s = []
    for idx, data_f in enumerate(valid_data_files):
        nda = np.load(data_f)
        data_s.append(nda)

        f = valid_label_files[idx]
        nda = np.load(f)
        label_s.append(nda)

    input_data = np.concatenate(data_s)
    input_label = np.concatenate(label_s)

    refl_i = input_label[:, params_i.index('refl_0_65um_nom'), :, :]
    rlo, rhi, rstd, rmean = get_min_max_std(refl_i)
    rmean_i = rmean[:, slc_y, slc_x]
    rlo_i = rlo[:, slc_y, slc_x]
    rhi_i = rhi[:, slc_y, slc_x]
    rstd_i = rstd[:, slc_y, slc_x]

    rlo_m = input_data[:, params.index('refl_submin_ch01'), :, :]
    rlo_m = rlo_m[:, slc_y, slc_x]

    rhi_m = input_data[:, params.index('refl_submax_ch01'), :, :]
    rhi_m = rhi_m[:, slc_y, slc_x]

    rstd_m = input_data[:, params.index('refl_substddev_ch01'), :, :]
    rstd_m = rstd_m[:, slc_y, slc_x]

    rmean = input_data[:, params.index('refl_0_65um_nom'), :, :]
    rmean_m = rmean[:, slc_y, slc_x]
    # ------------------------

    cp_i = input_label[:, params_i.index('cloud_probability'), :, :]
    _, _, _, mean = get_min_max_std(cp_i)
    cp_mean_i = mean[:, slc_y, slc_x]

    mean = input_data[:, params.index('cloud_probability'), :, :]
    cp_mean_m = mean[:, slc_y, slc_x]
    # -----------------------------

    opd_i = input_label[:, params_i.index('cld_opd_dcomp'), :, :]
    _, _, _, mean = get_min_max_std(opd_i)
    opd_mean_i = mean[:, slc_y, slc_x]

    mean = input_data[:, params.index('cld_opd_dcomp'), :, :]
    opd_mean_m = mean[:, slc_y, slc_x]

    np.save(outfile, (rmean_i, rmean_m, cp_mean_i, cp_mean_m, opd_mean_i, opd_mean_m, rlo_i, rlo_m, rhi_i, rhi_m, rstd_i, rstd_m))


if __name__ == "__main__":
    nn = SRCNN()
    nn.run('matchup_filename')