Skip to content
Snippets Groups Projects
Select Git revision
  • da96e57ca07793c1e921835a026cf4059c6334db
  • master default protected
  • use_flight_altitude
  • distribute
4 results

cloud_opd_fcn_abi.py

Blame
  • user avatar
    tomrink authored
    a7e1fff7
    History
    cloud_opd_fcn_abi.py 46.60 KiB
    import contextlib
    
    import tensorflow as tf
    
    from deeplearning.cloud_fraction_fcn_abi import get_label_data_5cat
    from util.augment import augment_image
    from util.setup_cloud_products import logdir, modeldir, now, ancillary_path
    from util.util import EarlyStop, normalize, denormalize, scale, scale2, descale, \
        get_grid_values_all, make_tf_callable_generator
    import glob
    import os
    import datetime
    import numpy as np
    import pickle
    import h5py
    import xarray as xr
    import gc
    import time
    
    AUTOTUNE = tf.data.AUTOTUNE
    
    LOG_DEVICE_PLACEMENT = False
    
    PROC_BATCH_SIZE = 4
    PROC_BATCH_BUFFER_SIZE = 5000
    
    NumClasses = 5
    if NumClasses == 2:
        NumLogits = 1
    else:
        NumLogits = NumClasses
    
    BATCH_SIZE = 128
    NUM_EPOCHS = 100
    
    EARLY_STOP = True
    PATIENCE = 7
    
    NOISE_TRAINING = False
    NOISE_STDDEV = 0.01
    DO_AUGMENT = True
    
    DO_SMOOTH = False
    SIGMA = 1.0
    DO_ZERO_OUT = False
    # CACHE_FILE = '/scratch/long/rink/cld_opd_abi_128x128_cache'
    CACHE_FILE = ''
    USE_EMA = False
    EMA_OVERWRITE_FREQUENCY = 5
    EMA_MOMENTUM = 0.99
    BETA_1 = 0.9
    BETA_2 = 0.999
    
    # setup scaling parameters dictionary
    mean_std_dct = {}
    mean_std_file = ancillary_path+'mean_std_lo_hi_l2.pkl'
    f = open(mean_std_file, 'rb')
    mean_std_dct_l2 = pickle.load(f)
    f.close()
    
    mean_std_file = ancillary_path+'mean_std_lo_hi_l1b.pkl'
    f = open(mean_std_file, 'rb')
    mean_std_dct_l1b = pickle.load(f)
    f.close()
    
    mean_std_dct.update(mean_std_dct_l1b)
    mean_std_dct.update(mean_std_dct_l2)
    
    IMG_DEPTH = 1
    
    label_param = 'cld_opd_dcomp'
    
    params = ['temp_11_0um_nom', 'refl_0_65um_nom', 'refl_submin_ch01', 'refl_submax_ch01', 'refl_substddev_ch01', 'cloud_probability', label_param]
    params_i = ['temp_11_0um_nom', 'refl_0_65um_nom', 'cloud_probability', label_param]
    data_params_half = ['temp_11_0um_nom', 'refl_0_65um_nom']
    sub_fields = ['refl_submin_ch01', 'refl_submax_ch01', 'refl_substddev_ch01']
    data_params_full = ['refl_0_65um_nom']
    
    label_idx_i = params_i.index(label_param)
    label_idx = params.index(label_param)
    
    print('data_params_half: ', data_params_half)
    print('data_params_full: ', data_params_full)
    print('label_param: ', label_param)
    
    KERNEL_SIZE = 3
    X_LEN = Y_LEN = 128
    
    if KERNEL_SIZE == 3:
        slc_x = slice(0, X_LEN // 4 + 2)
        slc_y = slice(0, Y_LEN // 4 + 2)
        x_64 = slice(4, X_LEN + 4)
        y_64 = slice(4, Y_LEN + 4)
    elif KERNEL_SIZE == 1:
        slc_x = slice(1, X_LEN // 4 + 1)
        slc_y = slice(1, Y_LEN // 4 + 1)
        x_64 = slice(4, X_LEN + 4)
        y_64 = slice(4, Y_LEN + 4)
    # ----------------------------------------
    
    
    @contextlib.contextmanager
    def options(options):
      old_opts = tf.config.optimizer.get_experimental_options()
      tf.config.optimizer.set_experimental_options(options)
      try:
        yield
      finally:
        tf.config.optimizer.set_experimental_options(old_opts)
    
    
    def build_residual_conv2d_block(conv, num_filters, block_name, activation=tf.nn.relu, padding='SAME',
                                    kernel_initializer='he_uniform', scale=None, kernel_size=3,
                                    do_drop_out=True, drop_rate=0.5, do_batch_norm=True):
    
        with tf.name_scope(block_name):
            skip = tf.keras.layers.Conv2D(num_filters, kernel_size=kernel_size, padding=padding, kernel_initializer=kernel_initializer, activation=activation)(conv)
            skip = tf.keras.layers.Conv2D(num_filters, kernel_size=kernel_size, padding=padding, activation=None)(skip)
    
            if scale is not None:
                skip = tf.keras.layers.Lambda(lambda x: x * scale)(skip)
    
            if do_drop_out:
                skip = tf.keras.layers.Dropout(drop_rate)(skip)
    
            if do_batch_norm:
                skip = tf.keras.layers.BatchNormalization()(skip)
    
            conv = conv + skip
            print(block_name+':', conv.shape)
    
        return conv
    
    
    def upsample_mean(grd):
        bsize, ylen, xlen = grd.shape
        up = np.zeros((bsize, ylen*2, xlen*2))
    
        up[:, ::4, ::4] = grd[:, ::4, ::4]
        up[:, 1::4, ::4] = grd[:, ::4, ::4]
        up[:, ::4, 1::4] = grd[:, ::4, ::4]
        up[:, 1::4, 1::4] = grd[:, ::4, ::4]
    
        return up
    
    
    def get_grid_cell_mean(grd_k):
        mean = np.nanmean([grd_k[:, 0::4, 0::4], grd_k[:, 1::4, 0::4], grd_k[:, 2::4, 0::4], grd_k[:, 3::4, 0::4],
                           grd_k[:, 0::4, 1::4], grd_k[:, 1::4, 1::4], grd_k[:, 2::4, 1::4], grd_k[:, 3::4, 1::4],
                           grd_k[:, 0::4, 2::4], grd_k[:, 1::4, 2::4], grd_k[:, 2::4, 2::4], grd_k[:, 3::4, 2::4],
                           grd_k[:, 0::4, 3::4], grd_k[:, 1::4, 3::4], grd_k[:, 2::4, 3::4], grd_k[:, 3::4, 3::4]], axis=0)
        # For an all-Nan slice
        np.where(np.isnan(mean), 0, mean)
    
        return mean
    
    
    def get_min_max_std(grd_k):
        lo = np.nanmin([grd_k[:, 0::4, 0::4], grd_k[:, 1::4, 0::4], grd_k[:, 2::4, 0::4], grd_k[:, 3::4, 0::4],
                        grd_k[:, 0::4, 1::4], grd_k[:, 1::4, 1::4], grd_k[:, 2::4, 1::4], grd_k[:, 3::4, 1::4],
                        grd_k[:, 0::4, 2::4], grd_k[:, 1::4, 2::4], grd_k[:, 2::4, 2::4], grd_k[:, 3::4, 2::4],
                        grd_k[:, 0::4, 3::4], grd_k[:, 1::4, 3::4], grd_k[:, 2::4, 3::4], grd_k[:, 3::4, 3::4]], axis=0)
    
        hi = np.nanmax([grd_k[:, 0::4, 0::4], grd_k[:, 1::4, 0::4], grd_k[:, 2::4, 0::4], grd_k[:, 3::4, 0::4],
                        grd_k[:, 0::4, 1::4], grd_k[:, 1::4, 1::4], grd_k[:, 2::4, 1::4], grd_k[:, 3::4, 1::4],
                        grd_k[:, 0::4, 2::4], grd_k[:, 1::4, 2::4], grd_k[:, 2::4, 2::4], grd_k[:, 3::4, 2::4],
                        grd_k[:, 0::4, 3::4], grd_k[:, 1::4, 3::4], grd_k[:, 2::4, 3::4], grd_k[:, 3::4, 3::4]], axis=0)
    
        std = np.nanstd([grd_k[:, 0::4, 0::4], grd_k[:, 1::4, 0::4], grd_k[:, 2::4, 0::4], grd_k[:, 3::4, 0::4],
                         grd_k[:, 0::4, 1::4], grd_k[:, 1::4, 1::4], grd_k[:, 2::4, 1::4], grd_k[:, 3::4, 1::4],
                         grd_k[:, 0::4, 2::4], grd_k[:, 1::4, 2::4], grd_k[:, 2::4, 2::4], grd_k[:, 3::4, 2::4],
                         grd_k[:, 0::4, 3::4], grd_k[:, 1::4, 3::4], grd_k[:, 2::4, 3::4], grd_k[:, 3::4, 3::4]], axis=0)
    
        avg = np.nanmean([grd_k[:, 0::4, 0::4], grd_k[:, 1::4, 0::4], grd_k[:, 2::4, 0::4], grd_k[:, 3::4, 0::4],
                          grd_k[:, 0::4, 1::4], grd_k[:, 1::4, 1::4], grd_k[:, 2::4, 1::4], grd_k[:, 3::4, 1::4],
                          grd_k[:, 0::4, 2::4], grd_k[:, 1::4, 2::4], grd_k[:, 2::4, 2::4], grd_k[:, 3::4, 2::4],
                          grd_k[:, 0::4, 3::4], grd_k[:, 1::4, 3::4], grd_k[:, 2::4, 3::4], grd_k[:, 3::4, 3::4]], axis=0)
        # For an all-NaN slice
        np.where(np.isnan(lo), 0, lo)
        np.where(np.isnan(hi), 0, hi)
        np.where(np.isnan(std), 0, std)
        np.where(np.isnan(avg), 0, avg)
    
        return lo, hi, std, avg
    
    
    def get_cldy_frac_opd(cld_prob, opd):
        cld_prob = np.where(np.isnan(cld_prob), 0.0, cld_prob)
        cld = np.where(cld_prob < 0.5, 0, 1)
        opd = np.where(np.isnan(opd), 0.0, opd)
    
        cnt_cld = cld[:, 0::4, 0::4] + cld[:, 1::4, 0::4] + cld[:, 2::4, 0::4] + cld[:, 3::4, 0::4] + \
                  cld[:, 0::4, 1::4] + cld[:, 1::4, 1::4] + cld[:, 2::4, 1::4] + cld[:, 3::4, 1::4] + \
                  cld[:, 0::4, 2::4] + cld[:, 1::4, 2::4] + cld[:, 2::4, 2::4] + cld[:, 3::4, 2::4] + \
                  cld[:, 0::4, 3::4] + cld[:, 1::4, 3::4] + cld[:, 2::4, 3::4] + cld[:, 3::4, 3::4]
    
        opd_sum = np.sum([opd[:, 0::4, 0::4], opd[:, 1::4, 0::4], opd[:, 2::4, 0::4], opd[:, 3::4, 0::4],
                          opd[:, 0::4, 1::4], opd[:, 1::4, 1::4], opd[:, 2::4, 1::4], opd[:, 3::4, 1::4],
                          opd[:, 0::4, 2::4], opd[:, 1::4, 2::4], opd[:, 2::4, 2::4], opd[:, 3::4, 2::4],
                          opd[:, 0::4, 3::4], opd[:, 1::4, 3::4], opd[:, 2::4, 3::4], opd[:, 3::4, 3::4]], axis=0)
    
        opd[cld == 0] = 0.0
        cld_opd_sum = np.sum([opd[:, 0::4, 0::4], opd[:, 1::4, 0::4], opd[:, 2::4, 0::4], opd[:, 3::4, 0::4],
                              opd[:, 0::4, 1::4], opd[:, 1::4, 1::4], opd[:, 2::4, 1::4], opd[:, 3::4, 1::4],
                              opd[:, 0::4, 2::4], opd[:, 1::4, 2::4], opd[:, 2::4, 2::4], opd[:, 3::4, 2::4],
                              opd[:, 0::4, 3::4], opd[:, 1::4, 3::4], opd[:, 2::4, 3::4], opd[:, 3::4, 3::4]], axis=0)
    
        cldy_opd = np.zeros(cnt_cld.shape, dtype=opd.dtype)
        cldy_opd[cnt_cld == 0] = opd_sum[cnt_cld == 0] / 16
        cldy_opd[cnt_cld != 0] = cld_opd_sum[cnt_cld != 0] / cnt_cld[cnt_cld != 0]
    
        return cldy_opd
    
    
    class SRCNN:
        
        def __init__(self):
    
            self.train_data = None
            self.train_label = None
            self.test_data = None
            self.test_label = None
            self.test_data_denorm = None
            
            self.train_dataset = None
            self.inner_train_dataset = None
            self.test_dataset = None
            self.eval_dataset = None
            self.X_img = None
            self.X_prof = None
            self.X_u = None
            self.X_v = None
            self.X_sfc = None
            self.inputs = []
            self.y = None
            self.handle = None
            self.inner_handle = None
            self.in_mem_batch = None
    
            self.h5f_l1b_trn = None
            self.h5f_l1b_tst = None
            self.h5f_l2_trn = None
            self.h5f_l2_tst = None
    
            self.logits = None
    
            self.predict_data = None
            self.predict_dataset = None
            self.mean_list = None
            self.std_list = None
            
            self.training_op = None
            self.correct = None
            self.accuracy = None
            self.loss = None
            self.pred_class = None
            self.variable_averages = None
    
            self.global_step = None
    
            self.writer_train = None
            self.writer_valid = None
            self.writer_train_valid_loss = None
    
            self.OUT_OF_RANGE = False
    
            self.model = None
            self.optimizer = None
            self.ema = None
            self.train_loss = None
            self.train_accuracy = None
            self.test_loss = None
            self.test_accuracy = None
            self.test_auc = None
            self.test_recall = None
            self.test_precision = None
            self.test_confusion_matrix = None
            self.test_true_pos = None
            self.test_true_neg = None
            self.test_false_pos = None
            self.test_false_neg = None
    
            self.test_labels = []
            self.test_preds = []
            self.test_probs = None
            self.test_input = []
            self.test_cat_cf = []
    
            self.learningRateSchedule = None
            self.num_data_samples = None
            self.initial_learning_rate = None
    
            self.data_dct = None
            self.train_data_files = None
            self.train_label_files = None
            self.test_data_files = None
            self.test_label_files = None
    
            # self.n_chans = len(data_params_half) + len(data_params_full) + 1
            self.n_chans = 6
    
            # Testing/Evaluation mode
            # self.X_img = tf.keras.Input(shape=(None, None, self.n_chans + 2))
            self.X_img = tf.keras.Input(shape=(None, None, self.n_chans))
    
            self.inputs.append(self.X_img)
    
            tf.debugging.set_log_device_placement(LOG_DEVICE_PLACEMENT)
    
        def get_in_mem_data_batch(self, idxs, is_training):
            if is_training:
                data_files = self.train_data_files
                label_files = self.train_label_files
            else:
                data_files = self.test_data_files
                label_files = self.test_label_files
    
            data_s = []
            label_s = []
            for k in idxs:
                f = data_files[k]
                nda = np.load(f)
                data_s.append(nda)
    
                f = label_files[k]
                nda = np.load(f)
                label_s.append(nda)
            input_data = np.concatenate(data_s)
            input_label = np.concatenate(label_s)
    
            # refl_i = input_label[:, params_i.index('refl_0_65um_nom'), :, :]
            # rlo, rhi, rstd, rmean = get_min_max_std(refl_i)
            # rmean = rmean[:, slc_y, slc_x]
            # rmean = scale2(rmean, -2.0, 120.0)
            # rlo = rlo[:, slc_y, slc_x]
            # rlo = scale2(rlo, -2.0, 120.0)
            # rhi = rhi[:, slc_y, slc_x]
            # rhi = scale2(rhi, -2.0, 120.0)
            # refl_rng = rhi - rlo
            # rstd = rstd[:, slc_y, slc_x]
            # rstd = scale2(rstd, 0.0, 20.0)
    
            data_norm = []
            # for param in data_params_half:
            #     idx = params.index(param)
            #     tmp = input_data[:, idx, :, :]
            #     tmp = tmp[:, slc_y, slc_x]
            #     # tmp = normalize(tmp, param, mean_std_dct)
            #     tmp = scale(tmp, param, mean_std_dct)
            #     data_norm.append(tmp)
                
            bt = input_data[:, params.index('temp_11_0um_nom'), :, :]
            bt = bt[:, slc_y, slc_x]
            # bt = normalize(bt, 'temp_11_0um_nom', mean_std_dct)
            bt = scale(bt, 'temp_11_0um_nom', mean_std_dct)
            data_norm.append(bt)
    
            tmp = input_label[:, params_i.index('cloud_probability'), :, :]
            cld_prob = tmp.copy()
            tmp = get_grid_cell_mean(tmp)
            tmp = tmp[:, slc_y, slc_x]
            data_norm.append(tmp)
    
            refl = input_data[:, params.index('refl_0_65um_nom'), :, :]
            refl = refl[:, slc_y, slc_x]
            # refl = normalize(refl, 'refl_0_65um_nom', mean_std_dct)
            refl = scale(refl, 'refl_0_65um_nom', mean_std_dct)
            data_norm.append(refl)
    
            # for param in sub_fields:
            #     idx = params.index(param)
            #     tmp = input_data[:, idx, :, :]
            #     tmp = tmp[:, slc_y, slc_x]
            #     if param != 'refl_substddev_ch01':
            #         # tmp = normalize(tmp, 'refl_0_65um_nom', mean_std_dct)
            #         tmp = scale(tmp, 'refl_0_65um_nom', mean_std_dct)
            #     else:
            #         # tmp = np.where(np.isnan(tmp), 0, tmp)
            #         tmp = scale2(tmp, 0.0, 20.0)
            #     data_norm.append(tmp)
    
            refl_lo = input_data[:, params.index(sub_fields[0]), :, :]
            refl_lo = refl_lo[:, slc_y, slc_x]
            refl_lo = scale2(refl_lo, -2.0, 120.0)
    
            refl_hi = input_data[:, params.index(sub_fields[1]), :, :]
            refl_hi = refl_hi[:, slc_y, slc_x]
            refl_hi = scale2(refl_hi, -2.0, 120.0)
    
            refl_rng = refl_hi - refl_lo
            data_norm.append(refl_rng)
    
            refl_std = input_data[:, params.index(sub_fields[2]), :, :]
            refl_std = refl_std[:, slc_y, slc_x]
            refl_std = scale2(refl_std, 0.0, 30.0)
            data_norm.append(refl_std)
    
            tmp = input_label[:, label_idx_i, :, :]
            tmp = get_grid_cell_mean(tmp)
            tmp = scale(tmp, label_param, mean_std_dct)
            tmp = tmp[:, slc_y, slc_x]
            data_norm.append(tmp)
            # ---------
            # data = np.stack(data_norm, axis=3)
            # data = data.astype(np.float32)
    
            # -----------------------------------------------------
            # -----------------------------------------------------
            label = input_label[:, label_idx_i, :, :]
            label = label[:, y_64, x_64]
            cld_prob = cld_prob[:, y_64, x_64]
            cat_cf = get_label_data_5cat(cld_prob)
            _, _, cp_std, _ = get_min_max_std(cld_prob)
            if KERNEL_SIZE != 1:
                cat_cf = np.pad(cat_cf, pad_width=[(0, 0), (1, 1), (1, 1)])
                cp_std = np.pad(cp_std, pad_width=[(0, 0), (1, 1), (1, 1)])
            data_norm.append(cat_cf)
            data_norm.append(cp_std)
            data = np.stack(data_norm, axis=3)
    
            label = get_cldy_frac_opd(cld_prob, label)
            # label = scale(label, label_param, mean_std_dct)
            label = np.where(np.isnan(label), 0, label)
            label = np.expand_dims(label, axis=3)
    
            data = data.astype(np.float32)
            label = label.astype(np.float32)
    
            # if is_training and DO_AUGMENT:
            #     data_ud = np.flip(data, axis=1)
            #     label_ud = np.flip(label, axis=1)
            #
            #     data_lr = np.flip(data, axis=2)
            #     label_lr = np.flip(label, axis=2)
            #
            #     data = np.concatenate([data, data_ud, data_lr])
            #     label = np.concatenate([label, label_ud, label_lr])
    
            return data, label
    
        def get_in_mem_data_batch_train(self, idxs):
            return self.get_in_mem_data_batch(idxs, True)
    
        def get_in_mem_data_batch_test(self, idxs):
            return self.get_in_mem_data_batch(idxs, False)
    
        @tf.function(input_signature=[tf.TensorSpec(None, tf.int32)])
        def data_function(self, indexes):
            out = tf.numpy_function(self.get_in_mem_data_batch_train, [indexes], [tf.float32, tf.float32])
            return out
    
        @tf.function(input_signature=[tf.TensorSpec(None, tf.int32)])
        def data_function_test(self, indexes):
            out = tf.numpy_function(self.get_in_mem_data_batch_test, [indexes], [tf.float32, tf.float32])
            return out
    
        def get_train_dataset(self, num_files):
            def integer_gen(limit):
                n = 0
                while n < limit:
                    yield n
                    n += 1
            num_gen = integer_gen(num_files)
            gen = make_tf_callable_generator(num_gen)
    
            dataset = tf.data.Dataset.from_generator(gen, output_types=tf.int32)
            dataset = dataset.batch(PROC_BATCH_SIZE)
            dataset = dataset.map(self.data_function, num_parallel_calls=8)
            dataset = dataset.cache(filename=CACHE_FILE)
            dataset = dataset.shuffle(PROC_BATCH_BUFFER_SIZE, reshuffle_each_iteration=True)
            if DO_AUGMENT:
                dataset = dataset.map(augment_image(), num_parallel_calls=8)
            dataset = dataset.prefetch(buffer_size=1)
            self.train_dataset = dataset
    
        def get_test_dataset(self, num_files):
            def integer_gen(limit):
                n = 0
                while n < limit:
                    yield n
                    n += 1
            num_gen = integer_gen(num_files)
            gen = make_tf_callable_generator(num_gen)
    
            dataset = tf.data.Dataset.from_generator(gen, output_types=tf.int32)
            dataset = dataset.batch(PROC_BATCH_SIZE)
            dataset = dataset.map(self.data_function_test, num_parallel_calls=8)
            dataset = dataset.cache()
            self.test_dataset = dataset
    
        def setup_pipeline(self, train_data_files, train_label_files, test_data_files, test_label_files, num_train_samples):
            self.train_data_files = train_data_files
            self.train_label_files = train_label_files
            self.test_data_files = test_data_files
            self.test_label_files = test_label_files
    
            self.get_train_dataset(len(train_data_files))
            self.get_test_dataset(len(test_data_files))
    
            self.num_data_samples = num_train_samples  # approximately
    
            print('datetime: ', now)
            print('training and test data: ')
            print('---------------------------')
            print('num train files: ', len(train_data_files))
            print('BATCH SIZE: ', BATCH_SIZE)
            print('num test files: ', len(test_data_files))
            print('setup_pipeline: Done')
    
        def setup_test_pipeline(self, test_data_files, test_label_files):
            self.test_data_files = test_data_files
            self.test_label_files = test_label_files
            self.get_test_dataset(len(test_data_files))
            print('setup_test_pipeline: Done')
    
        def build_srcnn(self, do_drop_out=False, do_batch_norm=False, drop_rate=0.5, factor=2):
            print('build_cnn')
            padding = "SAME"
    
            # activation = tf.nn.relu
            # activation = tf.nn.elu
            activation = tf.nn.relu
            momentum = 0.99
    
            num_filters = 64
    
            input_2d = self.inputs[0]
            input_2d = input_2d[:, :, :, 0:self.n_chans]
            print('input: ', input_2d.shape)
    
            conv = conv_b = tf.keras.layers.Conv2D(num_filters, kernel_size=KERNEL_SIZE, kernel_initializer='he_uniform', activation=activation, padding='VALID')(input_2d)
            print(conv.shape)
    
            # if NOISE_TRAINING:
            #     conv = conv_b = tf.keras.layers.GaussianNoise(stddev=NOISE_STDDEV)(conv)
    
            scale = 0.2
    
            conv_b = build_residual_conv2d_block(conv_b, num_filters, 'Residual_Block_1', kernel_size=KERNEL_SIZE, scale=scale)
    
            conv_b = build_residual_conv2d_block(conv_b, num_filters, 'Residual_Block_2', kernel_size=KERNEL_SIZE, scale=scale)
    
            conv_b = build_residual_conv2d_block(conv_b, num_filters, 'Residual_Block_3', kernel_size=KERNEL_SIZE, scale=scale)
    
            conv_b = build_residual_conv2d_block(conv_b, num_filters, 'Residual_Block_4', kernel_size=KERNEL_SIZE, scale=scale)
    
            conv_b = build_residual_conv2d_block(conv_b, num_filters, 'Residual_Block_5', kernel_size=KERNEL_SIZE, scale=scale)
    
            conv_b = build_residual_conv2d_block(conv_b, num_filters, 'Residual_Block_6', kernel_size=KERNEL_SIZE, scale=scale)
    
            conv_b = tf.keras.layers.Conv2D(num_filters, kernel_size=KERNEL_SIZE, strides=1, activation=activation, kernel_initializer='he_uniform', padding=padding)(conv_b)
    
            # conv = conv + conv_b
            conv = conv_b
            print(conv.shape)
    
            # This is effectively a Dense layer
            self.logits = tf.keras.layers.Conv2D(1, kernel_size=1, strides=1, padding=padding, name='regression')(conv)
            print(self.logits.shape)
    
        def build_training(self):
    
            # self.loss = tf.keras.losses.MeanSquaredError()  # Regression
            self.loss = tf.keras.losses.MeanAbsoluteError()  # Regression
    
            # decayed_learning_rate = learning_rate * decay_rate ^ (global_step / decay_steps)
            initial_learning_rate = 0.001
            decay_rate = 0.95
            steps_per_epoch = int(self.num_data_samples/BATCH_SIZE)  # one epoch
            decay_steps = int(steps_per_epoch) * 2
            print('initial rate, decay rate, steps/epoch, decay steps: ', initial_learning_rate, decay_rate, steps_per_epoch, decay_steps)
    
            self.learningRateSchedule = tf.keras.optimizers.schedules.ExponentialDecay(initial_learning_rate, decay_steps, decay_rate)
    
            optimizer = tf.keras.optimizers.Adam(learning_rate=self.learningRateSchedule,
                                                 beta_1=BETA_1, beta_2=BETA_2,
                                                 use_ema=USE_EMA,
                                                 ema_momentum=EMA_MOMENTUM,
                                                 ema_overwrite_frequency=EMA_OVERWRITE_FREQUENCY)
    
            self.optimizer = optimizer
            self.initial_learning_rate = initial_learning_rate
    
        def build_evaluation(self):
            self.train_accuracy = tf.keras.metrics.MeanAbsoluteError(name='train_accuracy')
            self.test_accuracy = tf.keras.metrics.MeanAbsoluteError(name='test_accuracy')
            self.train_loss = tf.keras.metrics.Mean(name='train_loss')
            self.test_loss = tf.keras.metrics.Mean(name='test_loss')
    
        @tf.function(input_signature=[tf.TensorSpec(None, tf.float32), tf.TensorSpec(None, tf.float32)])
        def train_step(self, inputs, labels):
            labels = tf.squeeze(labels, axis=[3])
            with tf.GradientTape() as tape:
                pred = self.model([inputs], training=True)
                loss = self.loss(labels, pred)
                total_loss = loss
                if len(self.model.losses) > 0:
                    reg_loss = tf.math.add_n(self.model.losses)
                    total_loss = loss + reg_loss
            gradients = tape.gradient(total_loss, self.model.trainable_variables)
            self.optimizer.apply_gradients(zip(gradients, self.model.trainable_variables))
    
            self.train_loss(loss)
            self.train_accuracy(labels, pred)
    
            return loss
    
        @tf.function(input_signature=[tf.TensorSpec(None, tf.float32), tf.TensorSpec(None, tf.float32)])
        def test_step(self, inputs, labels):
            labels = tf.squeeze(labels, axis=[3])
            pred = self.model([inputs], training=False)
            t_loss = self.loss(labels, pred)
    
            self.test_loss(t_loss)
            self.test_accuracy(labels, pred)
    
        # @tf.function(input_signature=[tf.TensorSpec(None, tf.float32), tf.TensorSpec(None, tf.float32)])
        # decorator commented out because pred.numpy(): pred not evaluated yet.
        def predict(self, inputs, labels):
            pred = self.model([inputs], training=False)
            # t_loss = self.loss(tf.squeeze(labels, axis=[3]), pred)
            t_loss = self.loss(labels, pred)
    
            self.test_labels.append(labels)
            self.test_preds.append(pred.numpy())
            self.test_input.append(inputs)
            self.test_cat_cf.append(inputs[:, :, :, self.n_chans])
    
            self.test_loss(t_loss)
            self.test_accuracy(labels, pred)
    
        def reset_test_metrics(self):
            self.test_loss.reset_states()
            self.test_accuracy.reset_states()
    
        def get_metrics(self):
            recall = self.test_recall.result()
            precsn = self.test_precision.result()
            f1 = 2 * (precsn * recall) / (precsn + recall)
    
            tn = self.test_true_neg.result()
            tp = self.test_true_pos.result()
            fn = self.test_false_neg.result()
            fp = self.test_false_pos.result()
    
            mcc = ((tp * tn) - (fp * fn)) / np.sqrt((tp + fp) * (tp + fn) * (tn + fp) * (tn + fn))
            return f1, mcc
    
        def do_training(self, ckpt_dir=None):
    
            if ckpt_dir is None:
                if not os.path.exists(modeldir):
                    os.mkdir(modeldir)
                ckpt = tf.train.Checkpoint(step=tf.Variable(1), model=self.model)
                ckpt_manager = tf.train.CheckpointManager(ckpt, modeldir, max_to_keep=3)
            else:
                ckpt = tf.train.Checkpoint(step=tf.Variable(1), model=self.model)
                ckpt_manager = tf.train.CheckpointManager(ckpt, ckpt_dir, max_to_keep=3)
                ckpt.restore(ckpt_manager.latest_checkpoint)
    
            self.writer_train = tf.summary.create_file_writer(os.path.join(logdir, 'plot_train'))
            self.writer_valid = tf.summary.create_file_writer(os.path.join(logdir, 'plot_valid'))
            self.writer_train_valid_loss = tf.summary.create_file_writer(os.path.join(logdir, 'plot_train_valid_loss'))
    
            step = 0
            total_time = 0
            best_test_loss = np.finfo(dtype=np.float64).max
    
            if EARLY_STOP:
                es = EarlyStop(patience=PATIENCE)
    
            for epoch in range(NUM_EPOCHS):
                self.train_loss.reset_states()
                self.train_accuracy.reset_states()
    
                t0 = datetime.datetime.now().timestamp()
    
                proc_batch_cnt = 0
                n_samples = 0
    
                for data, label in self.train_dataset:
                    trn_ds = tf.data.Dataset.from_tensor_slices((data, label))
                    trn_ds = trn_ds.batch(BATCH_SIZE)
                    for mini_batch in trn_ds:
                        if self.learningRateSchedule is not None:
                            loss = self.train_step(mini_batch[0], mini_batch[1])
    
                        if (step % 100) == 0:
    
                            with self.writer_train.as_default():
                                tf.summary.scalar('loss_trn', loss.numpy(), step=step)
                                tf.summary.scalar('learning_rate', self.optimizer.lr.numpy(), step=step)
                                tf.summary.scalar('num_train_steps', step, step=step)
                                tf.summary.scalar('num_epochs', epoch, step=step)
    
                            self.reset_test_metrics()
                            for data_tst, label_tst in self.test_dataset:
                                tst_ds = tf.data.Dataset.from_tensor_slices((data_tst, label_tst))
                                tst_ds = tst_ds.batch(BATCH_SIZE)
                                for mini_batch_test in tst_ds:
                                    self.test_step(mini_batch_test[0], mini_batch_test[1])
    
                            with self.writer_valid.as_default():
                                tf.summary.scalar('loss_val', self.test_loss.result(), step=step)
                                tf.summary.scalar('acc_val', self.test_accuracy.result(), step=step)
    
                            with self.writer_train_valid_loss.as_default():
                                tf.summary.scalar('loss_trn', loss.numpy(), step=step)
                                tf.summary.scalar('loss_val', self.test_loss.result(), step=step)
    
                            print('****** test loss, acc, lr: ', self.test_loss.result().numpy(), self.test_accuracy.result().numpy(),
                                  self.optimizer.lr.numpy())
    
                        step += 1
                        print('train loss: ', loss.numpy())
    
                    proc_batch_cnt += 1
                    n_samples += data.shape[0]
                    print('proc_batch_cnt: ', proc_batch_cnt, n_samples)
    
                t1 = datetime.datetime.now().timestamp()
                print('End of Epoch: ', epoch+1, 'elapsed time: ', (t1-t0))
                total_time += (t1-t0)
    
                self.reset_test_metrics()
                for data, label in self.test_dataset:
                    ds = tf.data.Dataset.from_tensor_slices((data, label))
                    ds = ds.batch(BATCH_SIZE)
                    for mini_batch in ds:
                        self.test_step(mini_batch[0], mini_batch[1])
    
                print('loss, acc: ', self.test_loss.result().numpy(), self.test_accuracy.result().numpy())
                print('------------------------------------------------------')
    
                tst_loss = self.test_loss.result().numpy()
                if tst_loss < best_test_loss:
                    best_test_loss = tst_loss
                    ckpt_manager.save()
    
                if EARLY_STOP and es.check_stop(tst_loss):
                    break
    
            print('total time: ', total_time)
            self.writer_train.close()
            self.writer_valid.close()
            self.writer_train_valid_loss.close()
    
        def build_model(self):
            with options({'layout': False}):
                print(tf.config.optimizer.get_experimental_options())
                self.build_srcnn()
                self.model = tf.keras.Model(self.inputs, self.logits)
    
        def restore(self, ckpt_dir):
    
            ckpt = tf.train.Checkpoint(step=tf.Variable(1), model=self.model)
            ckpt_manager = tf.train.CheckpointManager(ckpt, ckpt_dir, max_to_keep=3)
            ckpt.restore(ckpt_manager.latest_checkpoint)
    
            self.reset_test_metrics()
    
            for data, label in self.test_dataset:
                ds = tf.data.Dataset.from_tensor_slices((data, label))
                ds = ds.batch(BATCH_SIZE)
                for mini_batch_test in ds:
                    self.predict(mini_batch_test[0], mini_batch_test[1])
    
            print('loss, acc: ', self.test_loss.result().numpy(), self.test_accuracy.result().numpy())
    
            labels = np.concatenate(self.test_labels)
            preds = np.concatenate(self.test_preds)
            inputs = np.concatenate(self.test_input)
    
            # labels = denormalize(labels, label_param, mean_std_dct)
            # preds = denormalize(preds, label_param, mean_std_dct)
            # labels = descale(labels, label_param, mean_std_dct)
            # preds = descale(preds, label_param, mean_std_dct)
    
            return labels, preds, inputs
    
        def do_evaluate(self, inputs, ckpt_dir):
    
            ckpt = tf.train.Checkpoint(step=tf.Variable(1), model=self.model)
            ckpt_manager = tf.train.CheckpointManager(ckpt, ckpt_dir, max_to_keep=3)
            ckpt.restore(ckpt_manager.latest_checkpoint)
    
            self.reset_test_metrics()
    
            pred = self.model([inputs], training=False)
            self.test_probs = pred
            pred = pred.numpy()
    
            return pred
    
        def run(self, directory, ckpt_dir=None, num_data_samples=50000):
            train_data_files = glob.glob(directory+'train*mres*.npy')
            valid_data_files = glob.glob(directory+'valid*mres*.npy')
            train_label_files = glob.glob(directory+'train*ires*.npy')
            valid_label_files = glob.glob(directory+'valid*ires*.npy')
            self.setup_pipeline(train_data_files, train_label_files, valid_data_files, valid_label_files, num_data_samples)
    
            self.build_model()
            self.build_training()
            self.build_evaluation()
            self.do_training(ckpt_dir=ckpt_dir)
    
        def run_restore(self, directory, ckpt_dir):
            self.num_data_samples = 1000
    
            valid_data_files = glob.glob(directory + 'valid*mres*.npy')
            valid_label_files = [f.replace('mres', 'ires') for f in valid_data_files]
            self.setup_test_pipeline(valid_data_files, valid_label_files)
    
            self.build_model()
            self.build_training()
            self.build_evaluation()
            return self.restore(ckpt_dir)
    
        def run_evaluate(self, data, ckpt_dir):
            # data = tf.convert_to_tensor(data, dtype=tf.float32)
            self.num_data_samples = 80000
            self.build_model()
            self.build_training()
            self.build_evaluation()
            return self.do_evaluate(data, ckpt_dir)
    
        def setup_inference(self, ckpt_dir):
            self.num_data_samples = 80000
            self.build_model()
            self.build_training()
            self.build_evaluation()
    
            ckpt = tf.train.Checkpoint(step=tf.Variable(1), model=self.model)
            ckpt_manager = tf.train.CheckpointManager(ckpt, ckpt_dir, max_to_keep=3)
            ckpt.restore(ckpt_manager.latest_checkpoint)
    
        def do_inference(self, inputs):
            self.reset_test_metrics()
    
            pred = self.model([inputs], training=False)
            self.test_probs = pred
            pred = pred.numpy()
    
            return pred
    
        def run_inference(self, in_file, out_file):
            gc.collect()
    
            h5f = h5py.File(in_file, 'r')
    
            bt = get_grid_values_all(h5f, 'temp_11_0um_nom')
            y_len, x_len = bt.shape
            refl = get_grid_values_all(h5f, 'refl_0_65um_nom')
            refl_lo = get_grid_values_all(h5f, 'refl_0_65um_nom_min_sub')
            refl_hi = get_grid_values_all(h5f, 'refl_0_65um_nom_max_sub')
            refl_std = get_grid_values_all(h5f, 'refl_0_65um_nom_stddev_sub')
            cp = get_grid_values_all(h5f, 'cloud_probability')
            opd = get_grid_values_all(h5f, label_param)
    
            cldy_frac_opd = self.run_inference_(bt, refl, refl_lo, refl_hi, refl_std, cp, opd)
    
            cldy_frac_opd_out = np.full((y_len, x_len), -1.0, dtype=np.float32)
            border = int((KERNEL_SIZE - 1) / 2)
            cldy_frac_opd_out[border:y_len - border, border:x_len - border] = cldy_frac_opd[0, :, :, 0]
    
            # Use this hack for now.
            off_earth = (bt <= 161.0)
            night = np.isnan(refl)
            cldy_frac_opd_out[off_earth] = -1
            cldy_frac_opd_out[np.invert(off_earth) & night] = -1
    
            # ---  Make a DataArray ----------------------------------------------------
            # var_names = ['cloud_fraction', 'temp_11_0um', 'refl_0_65um']
            # dims = ['num_params', 'y', 'x']
            # da = xr.DataArray(np.stack([cld_frac_out, bt, refl], axis=0), dims=dims)
            # da.assign_coords({
            #     'num_params': var_names,
            #     'lat': (['y', 'x'], lats),
            #     'lon': (['y', 'x'], lons)
            # })
            # ---------------------------------------------------------------------------
    
            h5f.close()
    
            if out_file is not None:
                np.save(out_file, (cldy_frac_opd_out, bt, refl, cp))
            else:
                # return [cld_frac_out, bt, refl, cp, lons, lats]
                return cldy_frac_opd_out, opd
    
        def run_inference_full_disk(self, in_file, out_file):
            gc.collect()
    
            t0 = time.time()
            h5f = h5py.File(in_file, 'r')
    
            bt = get_grid_values_all(h5f, 'temp_11_0um_nom')
            y_len, x_len = bt.shape
            h_y_len = int(y_len / 2)
            refl = get_grid_values_all(h5f, 'refl_0_65um_nom')
            refl_lo = get_grid_values_all(h5f, 'refl_0_65um_nom_min_sub')
            refl_hi = get_grid_values_all(h5f, 'refl_0_65um_nom_max_sub')
            refl_std = get_grid_values_all(h5f, 'refl_0_65um_nom_stddev_sub')
            cp = get_grid_values_all(h5f, 'cloud_probability')
            opd = get_grid_values_all(h5f, label_param)
            t1 = time.time()
            print('   read time:', (t1-t0))
    
            bt_nh = bt[0:h_y_len + 1, :]
            refl_nh = refl[0:h_y_len + 1, :]
            refl_lo_nh = refl_lo[0:h_y_len + 1, :]
            refl_hi_nh = refl_hi[0:h_y_len + 1, :]
            refl_std_nh = refl_std[0:h_y_len + 1, :]
            cp_nh = cp[0:h_y_len + 1, :]
            opd_nh = opd[0:h_y_len + 1, :]
    
            bt_sh = bt[h_y_len - 1:y_len, :]
            refl_sh = refl[h_y_len - 1:y_len, :]
            refl_lo_sh = refl_lo[h_y_len - 1:y_len, :]
            refl_hi_sh = refl_hi[h_y_len - 1:y_len, :]
            refl_std_sh = refl_std[h_y_len - 1:y_len, :]
            cp_sh = cp[h_y_len - 1:y_len, :]
            opd_sh = opd[h_y_len - 1:y_len, :]
    
            t0 = time.time()
            cldy_frac_opd_nh = self.run_inference_(bt_nh, refl_nh, refl_lo_nh, refl_hi_nh, refl_std_nh, cp_nh, opd_nh)
            cldy_frac_opd_sh = self.run_inference_(bt_sh, refl_sh, refl_lo_sh, refl_hi_sh, refl_std_sh, cp_sh, opd_sh)
            t1 = time.time()
            print('   inference time: ', (t1-t0))
    
            cldy_frac_opd_out = np.full((y_len, x_len), -1.0, dtype=np.float32)
            border = int((KERNEL_SIZE - 1) / 2)
            cldy_frac_opd_out[border:h_y_len, border:x_len - border] = cldy_frac_opd_nh[0, :, :, 0]
            cldy_frac_opd_out[h_y_len:y_len - border, border:x_len - border] = cldy_frac_opd_sh[0, :, :, 0]
    
            # Use this hack for now.
            off_earth = (bt <= 161.0)
            night = np.isnan(refl)
            cldy_frac_opd_out[off_earth] = -1.0
            cldy_frac_opd_out[np.invert(off_earth) & night] = -1.0
    
            # ---   Make DataArray -------------------------------------------------
            # var_names = ['cloud_fraction', 'temp_11_0um', 'refl_0_65um']
            # dims = ['num_params', 'y', 'x']
            # da = xr.DataArray(np.stack([cld_frac_out, bt, refl], axis=0), dims=dims)
            # da.assign_coords({
            #     'num_params': var_names,
            #     'lat': (['y', 'x'], lats),
            #     'lon': (['y', 'x'], lons)
            # })
            # ------------------------------------------------------------------------
    
            h5f.close()
    
            if out_file is not None:
                np.save(out_file, (cldy_frac_opd_out, bt, refl, cp))
            else:
                # return [cld_frac_out, bt, refl, cp, lons, lats]
                return cldy_frac_opd_out, opd
    
        def run_inference_(self, bt, refl, refl_lo, refl_hi, refl_std, cp, opd):
            bt = scale(bt, 'temp_11_0um_nom', mean_std_dct)
            refl = scale(refl, 'refl_0_65um_nom', mean_std_dct)
            refl_lo = scale(refl_lo, 'refl_0_65um_nom', mean_std_dct)
            refl_hi = scale(refl_hi, 'refl_0_65um_nom', mean_std_dct)
            refl_rng = refl_hi - refl_lo
            refl_std = scale2(refl_std, 0.0, 30.0)
            cp = np.where(np.isnan(cp), 0, cp)
            opd = scale(opd, label_param, mean_std_dct)
    
            data = np.stack([bt, cp, refl, refl_rng, refl_std, opd], axis=2)
            data = np.expand_dims(data, axis=0)
            opd = self.do_inference(data)
    
            return opd
    
    
    def run_restore_static(directory, ckpt_dir, out_file=None):
        nn = SRCNN()
        labels, preds, inputs = nn.run_restore(directory, ckpt_dir)
        print(np.histogram(labels))
        print(np.histogram(preds))
        if out_file is not None:
            y_hi, x_hi = (Y_LEN // 4) + 1, (X_LEN // 4) + 1
            np.save(out_file,
                    [labels[:, :, :, 0],
                     preds[:, :, :, 0],
                     descale(inputs[:, 1:y_hi, 1:x_hi, 0], 'temp_11_0um_nom', mean_std_dct),
                     inputs[:, 1:y_hi, 1:x_hi, 1],
                     descale(inputs[:, 1:y_hi, 1:x_hi, 2], 'refl_0_65um_nom', mean_std_dct),
                     descale(inputs[:, 1:y_hi, 1:x_hi, 3], 'refl_0_65um_nom', mean_std_dct),
                     inputs[:, 1:y_hi, 1:x_hi, 4],
                     descale(inputs[:, 1:y_hi, 1:x_hi, 5], label_param, mean_std_dct),
                     inputs[:, 1:y_hi, 1:x_hi, 6],
                     inputs[:, 1:y_hi, 1:x_hi, 7]])
    
    
    def run_evaluate_static(in_file, out_file, ckpt_dir):
        gc.collect()
    
        h5f = h5py.File(in_file, 'r')
    
        bt = get_grid_values_all(h5f, 'temp_11_0um_nom')
        y_len, x_len = bt.shape
        refl = get_grid_values_all(h5f, 'refl_0_65um_nom')
        refl_lo = get_grid_values_all(h5f, 'refl_0_65um_nom_min_sub')
        refl_hi = get_grid_values_all(h5f, 'refl_0_65um_nom_max_sub')
        refl_std = get_grid_values_all(h5f, 'refl_0_65um_nom_stddev_sub')
        cp = get_grid_values_all(h5f, label_param)
        # lons = get_grid_values_all(h5f, 'longitude')
        # lats = get_grid_values_all(h5f, 'latitude')
    
        cld_frac = run_evaluate_static_(bt, refl, refl_lo, refl_hi, refl_std, cp, ckpt_dir)
    
        cld_frac_out = np.zeros((y_len, x_len), dtype=np.int8)
        border = int((KERNEL_SIZE - 1)/2)
        cld_frac_out[border:y_len-border, border:x_len - border] = cld_frac[0, :, :]
    
        # Use this hack for now.
        off_earth = (bt <= 161.0)
        night = np.isnan(refl)
        cld_frac_out[off_earth] = -1
        cld_frac_out[np.invert(off_earth) & night] = -1
    
        # ---  Make a DataArray ----------------------------------------------------
        # var_names = ['cloud_fraction', 'temp_11_0um', 'refl_0_65um']
        # dims = ['num_params', 'y', 'x']
        # da = xr.DataArray(np.stack([cld_frac_out, bt, refl], axis=0), dims=dims)
        # da.assign_coords({
        #     'num_params': var_names,
        #     'lat': (['y', 'x'], lats),
        #     'lon': (['y', 'x'], lons)
        # })
        # ---------------------------------------------------------------------------
    
        h5f.close()
    
        if out_file is not None:
            np.save(out_file, (cld_frac_out, bt, refl, cp))
        else:
            # return [cld_frac_out, bt, refl, cp, lons, lats]
            return cld_frac_out
    
    
    def run_evaluate_static_full_disk(in_file, out_file, ckpt_dir):
        gc.collect()
    
        h5f = h5py.File(in_file, 'r')
    
        bt = get_grid_values_all(h5f, 'temp_11_0um_nom')
        y_len, x_len = bt.shape
        h_y_len = int(y_len/2)
        refl = get_grid_values_all(h5f, 'refl_0_65um_nom')
        refl_lo = get_grid_values_all(h5f, 'refl_0_65um_nom_min_sub')
        refl_hi = get_grid_values_all(h5f, 'refl_0_65um_nom_max_sub')
        refl_std = get_grid_values_all(h5f, 'refl_0_65um_nom_stddev_sub')
        cp = get_grid_values_all(h5f, label_param)
        # lons = get_grid_values_all(h5f, 'longitude')
        # lats = get_grid_values_all(h5f, 'latitude')
    
        bt_nh = bt[0:h_y_len+1, :]
        refl_nh = refl[0:h_y_len+1, :]
        refl_lo_nh = refl_lo[0:h_y_len+1, :]
        refl_hi_nh = refl_hi[0:h_y_len+1, :]
        refl_std_nh = refl_std[0:h_y_len+1, :]
        cp_nh = cp[0:h_y_len+1, :]
    
        bt_sh = bt[h_y_len-1:y_len, :]
        refl_sh = refl[h_y_len-1:y_len, :]
        refl_lo_sh = refl_lo[h_y_len-1:y_len, :]
        refl_hi_sh = refl_hi[h_y_len-1:y_len, :]
        refl_std_sh = refl_std[h_y_len-1:y_len, :]
        cp_sh = cp[h_y_len-1:y_len, :]
    
        cld_frac_nh = run_evaluate_static_(bt_nh, refl_nh, refl_lo_nh, refl_hi_nh, refl_std_nh, cp_nh, ckpt_dir)
    
        cld_frac_sh = run_evaluate_static_(bt_sh, refl_sh, refl_lo_sh, refl_hi_sh, refl_std_sh, cp_sh, ckpt_dir)
    
        cld_frac_out = np.zeros((y_len, x_len), dtype=np.int8)
        border = int((KERNEL_SIZE - 1)/2)
        cld_frac_out[border:h_y_len, border:x_len - border] = cld_frac_nh[0, :, :]
        cld_frac_out[h_y_len:y_len - border, border:x_len - border] = cld_frac_sh[0, :, :]
    
        # Use this hack for now.
        off_earth = (bt <= 161.0)
        night = np.isnan(refl)
        cld_frac_out[off_earth] = -1
        cld_frac_out[np.invert(off_earth) & night] = -1
    
        # ---   Make DataArray -------------------------------------------------
        # var_names = ['cloud_fraction', 'temp_11_0um', 'refl_0_65um']
        # dims = ['num_params', 'y', 'x']
        # da = xr.DataArray(np.stack([cld_frac_out, bt, refl], axis=0), dims=dims)
        # da.assign_coords({
        #     'num_params': var_names,
        #     'lat': (['y', 'x'], lats),
        #     'lon': (['y', 'x'], lons)
        # })
        # ------------------------------------------------------------------------
    
        h5f.close()
    
        if out_file is not None:
            np.save(out_file, (cld_frac_out, bt, refl, cp))
        else:
            # return [cld_frac_out, bt, refl, cp, lons, lats]
            return cld_frac_out
    
    
    def run_evaluate_static_valid(in_file, out_file, ckpt_dir):
        gc.collect()
    
        h5f = h5py.File(in_file, 'r')
    
        bt = get_grid_values_all(h5f, 'orig/temp_ch38')
        y_len, x_len = bt.shape
        refl = get_grid_values_all(h5f, 'orig/refl_ch01')
        refl_lo = get_grid_values_all(h5f, 'orig/refl_submin_ch01')
        refl_hi = get_grid_values_all(h5f, 'orig/refl_submax_ch01')
        refl_std = get_grid_values_all(h5f, 'orig/refl_substddev_ch01')
        cp = get_grid_values_all(h5f, 'orig/'+label_param)
        lons = get_grid_values_all(h5f, 'orig/longitude')
        lats = get_grid_values_all(h5f, 'orig/latitude')
        cp_sres = get_grid_values_all(h5f, 'super/'+label_param)
    
        mean_cp_sres = get_grid_cell_mean(np.expand_dims(cp_sres, axis=0))[0]
        # cld_frac_truth = get_label_data_5cat(np.expand_dims(cp_sres, axis=0))[0]
        cld_frac_truth = None
    
        h5f.close()
    
        cld_frac = run_evaluate_static_(bt, refl, refl_lo, refl_hi, refl_std, cp, ckpt_dir)
    
        cld_frac_out = np.zeros((y_len, x_len), dtype=np.int8)
        border = int((KERNEL_SIZE - 1)/2)
        cld_frac_out[border:y_len-border, border:x_len - border] = cld_frac[0, :, :]
    
        var_names = ['cloud_fraction', 'temp_11_0um', 'refl_0_65um']
        dims = ['num_params', 'y', 'x']
        da = xr.DataArray(np.stack([cld_frac_out, bt, refl], axis=0), dims=dims)
        da.assign_coords({
            'num_params': var_names,
            'lat': (['y', 'x'], lats),
            'lon': (['y', 'x'], lons)
        })
    
        if out_file is not None:
            np.save(out_file, (cld_frac_out, bt, refl, cp, lons, lats, mean_cp_sres, cld_frac_truth))
        else:
            return [cld_frac_out, bt, refl, cp, lons, lats]
    
    
    def run_evaluate_static_(bt, refl, refl_lo, refl_hi, refl_std, cp, ckpt_dir):
        bt = normalize(bt, 'temp_11_0um_nom', mean_std_dct)
        refl = normalize(refl, 'refl_0_65um_nom', mean_std_dct)
        refl_lo = normalize(refl_lo, 'refl_0_65um_nom', mean_std_dct)
        refl_hi = normalize(refl_hi, 'refl_0_65um_nom', mean_std_dct)
        refl_std = np.where(np.isnan(refl_std), 0, refl_std)
        cp = np.where(np.isnan(cp), 0, cp)
    
        data = np.stack([bt, refl, refl_lo, refl_hi, refl_std, cp], axis=2)
        data = np.expand_dims(data, axis=0)
        nn = SRCNN()
        probs = nn.run_evaluate(data, ckpt_dir)
        cld_frac = probs.argmax(axis=3)
        cld_frac = cld_frac.astype(np.int8)
    
        return cld_frac
    
    
    def analyze(directory, outfile):
        train_data_files = glob.glob(directory + 'train*mres*.npy')
        valid_data_files = glob.glob(directory + 'valid*mres*.npy')
        train_label_files = glob.glob(directory + 'train*ires*.npy')
        valid_label_files = glob.glob(directory + 'valid*ires*.npy')
    
        data_s = []
        label_s = []
        for idx, data_f in enumerate(valid_data_files):
            nda = np.load(data_f)
            data_s.append(nda)
    
            f = valid_label_files[idx]
            nda = np.load(f)
            label_s.append(nda)
    
        input_data = np.concatenate(data_s)
        input_label = np.concatenate(label_s)
    
        refl_i = input_label[:, params_i.index('refl_0_65um_nom'), :, :]
        rlo, rhi, rstd, rmean = get_min_max_std(refl_i)
        rmean_i = rmean[:, slc_y, slc_x]
        rlo_i = rlo[:, slc_y, slc_x]
        rhi_i = rhi[:, slc_y, slc_x]
        rstd_i = rstd[:, slc_y, slc_x]
    
        rlo_m = input_data[:, params.index('refl_submin_ch01'), :, :]
        rlo_m = rlo_m[:, slc_y, slc_x]
    
        rhi_m = input_data[:, params.index('refl_submax_ch01'), :, :]
        rhi_m = rhi_m[:, slc_y, slc_x]
    
        rstd_m = input_data[:, params.index('refl_substddev_ch01'), :, :]
        rstd_m = rstd_m[:, slc_y, slc_x]
    
        rmean = input_data[:, params.index('refl_0_65um_nom'), :, :]
        rmean_m = rmean[:, slc_y, slc_x]
        # ------------------------
    
        cp_i = input_label[:, params_i.index('cloud_probability'), :, :]
        _, _, _, mean = get_min_max_std(cp_i)
        cp_mean_i = mean[:, slc_y, slc_x]
    
        mean = input_data[:, params.index('cloud_probability'), :, :]
        cp_mean_m = mean[:, slc_y, slc_x]
        # -----------------------------
    
        opd_i = input_label[:, params_i.index('cld_opd_dcomp'), :, :]
        _, _, _, mean = get_min_max_std(opd_i)
        opd_mean_i = mean[:, slc_y, slc_x]
    
        mean = input_data[:, params.index('cld_opd_dcomp'), :, :]
        opd_mean_m = mean[:, slc_y, slc_x]
    
        np.save(outfile, (rmean_i, rmean_m, cp_mean_i, cp_mean_m, opd_mean_i, opd_mean_m, rlo_i, rlo_m, rhi_i, rhi_m, rstd_i, rstd_m))
    
    
    if __name__ == "__main__":
        nn = SRCNN()
        nn.run('matchup_filename')