Skip to content
Snippets Groups Projects
Select Git revision
  • d6ca0acfe8150470a78802ea2b65777375f26725
  • master default protected
  • use_flight_altitude
  • distribute
4 results

cloudheight.cpython-37.pyc

Blame
  • espcn_l1b_l2.py 24.01 KiB
    import glob
    import tensorflow as tf
    from util.setup import logdir, modeldir, now, ancillary_path
    from util.util import EarlyStop, normalize, denormalize, resample, resample_2d_linear, get_grid_values_all, \
        resample_2d_linear_one
    import os, datetime
    import numpy as np
    import pickle
    import h5py
    
    # L1B M/I-bands: /apollo/cloud/scratch/cwhite/VIIRS_HRES/2019/2019_01_01/
    # CLAVRx: /apollo/cloud/scratch/Satellite_Output/VIIRS_HRES/2019/2019_01_01/
    # /apollo/cloud/scratch/Satellite_Output/andi/NEW/VIIRS_HRES/2019
    
    LOG_DEVICE_PLACEMENT = False
    
    PROC_BATCH_SIZE = 4
    PROC_BATCH_BUFFER_SIZE = 50000
    
    NumClasses = 2
    if NumClasses == 2:
        NumLogits = 1
    else:
        NumLogits = NumClasses
    
    BATCH_SIZE = 64
    NUM_EPOCHS = 80
    
    TRACK_MOVING_AVERAGE = False
    EARLY_STOP = True
    
    NOISE_TRAINING = False
    NOISE_STDDEV = 0.10
    DO_AUGMENT = True
    
    IMG_DEPTH = 1
    
    # setup scaling parameters dictionary
    mean_std_dct = {}
    mean_std_file = ancillary_path+'mean_std_lo_hi_l2.pkl'
    f = open(mean_std_file, 'rb')
    mean_std_dct_l2 = pickle.load(f)
    f.close()
    
    mean_std_file = ancillary_path+'mean_std_lo_hi_l1b.pkl'
    f = open(mean_std_file, 'rb')
    mean_std_dct_l1b = pickle.load(f)
    f.close()
    
    mean_std_dct.update(mean_std_dct_l1b)
    mean_std_dct.update(mean_std_dct_l2)
    
    DO_ZERO_OUT = False
    
    # label_param = 'cloud_fraction'
    label_param = 'cld_opd_dcomp'
    # label_param = 'cloud_probability'
    
    params = ['temp_11_0um_nom', 'temp_12_0um_nom', 'refl_0_65um_nom', label_param]
    data_params = ['temp_11_0um_nom', 'refl_0_65um_nom']
    
    label_idx = params.index(label_param)
    
    print('data_params: ', data_params)
    print('label_param: ', label_param)
    
    
    x_134 = np.arange(134)
    y_134 = np.arange(134)
    x_134_2 = x_134[2:133:2]
    y_134_2 = y_134[2:133:2]
    
    slc_x = slice(3, 131)
    slc_y = slice(3, 131)
    slc_x_2 = slice(2, 133, 2)
    slc_y_2 = slice(2, 133, 2)
    
    
    def build_residual_conv2d_block(conv, num_filters, block_name, activation=tf.nn.leaky_relu, padding='SAME', scale=None):
        # kernel_initializer = 'glorot_uniform'
        kernel_initializer = 'he_uniform'
    
        with tf.name_scope(block_name):
            skip = tf.keras.layers.Conv2D(num_filters, kernel_size=3, strides=1, padding=padding, kernel_initializer=kernel_initializer, activation=activation)(conv)
            skip = tf.keras.layers.Conv2D(num_filters, kernel_size=3, strides=1, padding=padding, activation=None)(skip)
            if scale is not None:
                skip = tf.keras.layers.Lambda(lambda x: x * scale)(skip)
            conv = conv + skip
            print(conv.shape)
    
        return conv
    
    
    class ESPCN:
        
        def __init__(self):
    
            self.train_data = None
            self.train_label = None
            self.test_data = None
            self.test_label = None
            self.test_data_denorm = None
            
            self.train_dataset = None
            self.inner_train_dataset = None
            self.test_dataset = None
            self.eval_dataset = None
            self.X_img = None
            self.X_prof = None
            self.X_u = None
            self.X_v = None
            self.X_sfc = None
            self.inputs = []
            self.y = None
            self.handle = None
            self.inner_handle = None
            self.in_mem_batch = None
    
            self.h5f_l1b_trn = None
            self.h5f_l1b_tst = None
            self.h5f_l2_trn = None
            self.h5f_l2_tst = None
    
            self.logits = None
    
            self.predict_data = None
            self.predict_dataset = None
            self.mean_list = None
            self.std_list = None
            
            self.training_op = None
            self.correct = None
            self.accuracy = None
            self.loss = None
            self.pred_class = None
            self.variable_averages = None
    
            self.global_step = None
    
            self.writer_train = None
            self.writer_valid = None
            self.writer_train_valid_loss = None
    
            self.OUT_OF_RANGE = False
    
            self.abi = None
            self.temp = None
            self.wv = None
            self.lbfp = None
            self.sfc = None
    
            self.in_mem_data_cache = {}
            self.in_mem_data_cache_test = {}
    
            self.model = None
            self.optimizer = None
            self.ema = None
            self.train_loss = None
            self.train_accuracy = None
            self.test_loss = None
            self.test_accuracy = None
            self.test_auc = None
            self.test_recall = None
            self.test_precision = None
            self.test_confusion_matrix = None
            self.test_true_pos = None
            self.test_true_neg = None
            self.test_false_pos = None
            self.test_false_neg = None
    
            self.test_labels = []
            self.test_preds = []
            self.test_probs = None
    
            self.learningRateSchedule = None
            self.num_data_samples = None
            self.initial_learning_rate = None
    
            self.data_dct = None
            self.train_data_files = None
            self.train_label_files = None
            self.test_data_files = None
            self.test_label_files = None
    
            self.train_data_nda = None
            self.train_label_nda = None
            self.test_data_nda = None
            self.test_label_nda = None
    
            self.n_chans = len(data_params) + 1
    
            self.X_img = tf.keras.Input(shape=(None, None, self.n_chans))
    
            self.inputs.append(self.X_img)
    
            tf.debugging.set_log_device_placement(LOG_DEVICE_PLACEMENT)
    
        def get_in_mem_data_batch(self, idxs, is_training):
            if is_training:
                files = self.train_data_files
            else:
                files = self.test_data_files
    
            data_s = []
            for k in idxs:
                f = files[k]
                nda = np.load(f)
                data_s.append(nda)
            input_data = np.concatenate(data_s)
    
            add_noise = None
            noise_scale = None
            if is_training:
                add_noise = True
                noise_scale = 0.005
    
            data_norm = []
            for k, param in enumerate(data_params):
                # tmp = input_data[:, k, :, :]
                tmp = input_data[:, k, slc_y_2, slc_x_2]
                tmp = normalize(tmp, param, mean_std_dct, add_noise=add_noise, noise_scale=noise_scale)
                # tmp = resample_2d_linear(x_134, y_134, tmp, x_134_2, y_134_2)
                data_norm.append(tmp)
    
            # tmp = input_data[:, label_idx, :, ]
            tmp = input_data[:, label_idx, slc_y_2, slc_x_2]
            if label_param != 'cloud_fraction':
                tmp = normalize(tmp, label_param, mean_std_dct, add_noise=add_noise, noise_scale=noise_scale)
            else:
                tmp = np.where(np.isnan(tmp), 0, tmp)
            # tmp = resample_2d_linear(x_134, y_134, tmp, x_134_2, y_134_2)
            data_norm.append(tmp)
    
            data = np.stack(data_norm, axis=3)
    
            label = input_data[:, label_idx, slc_y, slc_x]
            if label_param != 'cloud_fraction':
                label = normalize(label, label_param, mean_std_dct)
            else:
                label = np.where(np.isnan(label), 0, label)
            label = np.expand_dims(label, axis=3)
    
            data = data.astype(np.float32)
            label = label.astype(np.float32)
    
            if is_training and DO_AUGMENT:
                data_ud = np.flip(data, axis=1)
                label_ud = np.flip(label, axis=1)
    
                data_lr = np.flip(data, axis=2)
                label_lr = np.flip(label, axis=2)
    
                data = np.concatenate([data, data_ud, data_lr])
                label = np.concatenate([label, label_ud, label_lr])
    
            return data, label
    
        def get_in_mem_data_batch_train(self, idxs):
            return self.get_in_mem_data_batch(idxs, True)
    
        def get_in_mem_data_batch_test(self, idxs):
            return self.get_in_mem_data_batch(idxs, False)
    
        def get_in_mem_data_batch_eval(self, idxs):
            data = []
            for param in self.train_params:
                nda = self.data_dct[param]
                nda = normalize(nda, param, mean_std_dct)
                data.append(nda)
            data = np.stack(data)
            data = data.astype(np.float32)
            data = np.transpose(data, axes=(1, 2, 0))
            data = np.expand_dims(data, axis=0)
    
            return data
    
        @tf.function(input_signature=[tf.TensorSpec(None, tf.int32)])
        def data_function(self, indexes):
            out = tf.numpy_function(self.get_in_mem_data_batch_train, [indexes], [tf.float32, tf.float32])
            return out
    
        @tf.function(input_signature=[tf.TensorSpec(None, tf.int32)])
        def data_function_test(self, indexes):
            out = tf.numpy_function(self.get_in_mem_data_batch_test, [indexes], [tf.float32, tf.float32])
            return out
    
        @tf.function(input_signature=[tf.TensorSpec(None, tf.int32)])
        def data_function_evaluate(self, indexes):
            # TODO: modify for user specified altitude
            out = tf.numpy_function(self.get_in_mem_data_batch_eval, [indexes], [tf.float32])
            return out
    
        def get_train_dataset(self, indexes):
            indexes = list(indexes)
    
            dataset = tf.data.Dataset.from_tensor_slices(indexes)
            dataset = dataset.batch(PROC_BATCH_SIZE)
            dataset = dataset.map(self.data_function, num_parallel_calls=8)
            dataset = dataset.cache()
            if DO_AUGMENT:
                dataset = dataset.shuffle(PROC_BATCH_BUFFER_SIZE)
            dataset = dataset.prefetch(buffer_size=1)
            self.train_dataset = dataset
    
        def get_test_dataset(self, indexes):
            indexes = list(indexes)
    
            dataset = tf.data.Dataset.from_tensor_slices(indexes)
            dataset = dataset.batch(PROC_BATCH_SIZE)
            dataset = dataset.map(self.data_function_test, num_parallel_calls=8)
            dataset = dataset.cache()
            self.test_dataset = dataset
    
        def get_evaluate_dataset(self, indexes):
            indexes = list(indexes)
    
            dataset = tf.data.Dataset.from_tensor_slices(indexes)
            dataset = dataset.map(self.data_function_evaluate, num_parallel_calls=8)
            self.eval_dataset = dataset
    
        def setup_pipeline(self, train_data_files, test_data_files, num_train_samples):
    
            self.train_data_files = train_data_files
            self.test_data_files = test_data_files
    
            trn_idxs = np.arange(len(train_data_files))
            np.random.shuffle(trn_idxs)
            tst_idxs = np.arange(len(test_data_files))
    
            self.get_train_dataset(trn_idxs)
            self.get_test_dataset(tst_idxs)
    
            self.num_data_samples = num_train_samples  # approximately
    
            print('datetime: ', now)
            print('training and test data: ')
            print('---------------------------')
            print('num train samples: ', self.num_data_samples)
            print('BATCH SIZE: ', BATCH_SIZE)
            print('num test samples: ', tst_idxs.shape[0])
            print('setup_pipeline: Done')
    
        def setup_test_pipeline(self, test_data_files):
            self.test_data_files = test_data_files
            tst_idxs = np.arange(len(test_data_files))
            self.get_test_dataset(tst_idxs)
            print('setup_test_pipeline: Done')
    
        def setup_eval_pipeline(self, filename):
            idxs = [0]
            self.num_data_samples = idxs.shape[0]
    
            self.get_evaluate_dataset(idxs)
    
        def build_espcn(self, do_drop_out=False, do_batch_norm=False, drop_rate=0.5, factor=2):
            print('build_cnn')
            padding = "SAME"
    
            # activation = tf.nn.elu
            # activation = tf.nn.leaky_relu
            activation = tf.nn.relu
            # kernel_initializer = 'glorot_uniform'
            kernel_initializer = 'he_uniform'
            momentum = 0.99
    
            num_filters = 64
    
            input_2d = self.inputs[0]
            print('input: ', input_2d.shape)
    
            conv = conv_b = tf.keras.layers.Conv2D(num_filters, kernel_size=3, padding='VALID', kernel_initializer=kernel_initializer, activation=activation)(input_2d)
            print(conv.shape)
    
            if NOISE_TRAINING:
                conv = conv_b = tf.keras.layers.GaussianNoise(stddev=NOISE_STDDEV)(conv)
    
            scale = 0.20
    
            conv_b = build_residual_conv2d_block(conv_b, num_filters, 'Residual_Block_1', scale=scale)
    
            conv_b = build_residual_conv2d_block(conv_b, num_filters, 'Residual_Block_2', scale=scale)
    
            conv_b = build_residual_conv2d_block(conv_b, num_filters, 'Residual_Block_3', scale=scale)
    
            conv_b = build_residual_conv2d_block(conv_b, num_filters, 'Residual_Block_4', scale=scale)
    
            conv_b = build_residual_conv2d_block(conv_b, num_filters, 'Residual_Block_5', scale=scale)
    
            conv_b = build_residual_conv2d_block(conv_b, num_filters, 'Residual_Block_6', scale=scale)
    
            conv_b = tf.keras.layers.Conv2D(num_filters, kernel_size=3, strides=1, padding=padding, kernel_initializer=kernel_initializer)(conv_b)
    
            conv = conv + conv_b
            print(conv.shape)
    
            conv = tf.keras.layers.Conv2D(num_filters * (factor ** 2), 3, padding=padding, activation=activation)(conv)
            print(conv.shape)
    
            conv = tf.nn.depth_to_space(conv, factor)
            print(conv.shape)
    
            self.logits = tf.keras.layers.Conv2D(IMG_DEPTH, kernel_size=3, strides=1, padding=padding, name='regression')(conv)
    
            print(self.logits.shape)
    
        def build_training(self):
            self.loss = tf.keras.losses.MeanSquaredError()  # Regression
    
            # decayed_learning_rate = learning_rate * decay_rate ^ (global_step / decay_steps)
            initial_learning_rate = 0.002
            decay_rate = 0.95
            steps_per_epoch = int(self.num_data_samples/BATCH_SIZE)  # one epoch
            decay_steps = int(steps_per_epoch / 2)
            print('initial rate, decay rate, steps/epoch, decay steps: ', initial_learning_rate, decay_rate, steps_per_epoch, decay_steps)
    
            self.learningRateSchedule = tf.keras.optimizers.schedules.ExponentialDecay(initial_learning_rate, decay_steps, decay_rate)
    
            optimizer = tf.keras.optimizers.Adam(learning_rate=self.learningRateSchedule)
    
            if TRACK_MOVING_AVERAGE:
                # Not really sure this works properly (from tfa)
                # optimizer = tfa.optimizers.MovingAverage(optimizer)
                self.ema = tf.train.ExponentialMovingAverage(decay=0.9999)
    
            self.optimizer = optimizer
            self.initial_learning_rate = initial_learning_rate
    
        def build_evaluation(self):
            self.train_accuracy = tf.keras.metrics.MeanAbsoluteError(name='train_accuracy')
            self.test_accuracy = tf.keras.metrics.MeanAbsoluteError(name='test_accuracy')
            self.train_loss = tf.keras.metrics.Mean(name='train_loss')
            self.test_loss = tf.keras.metrics.Mean(name='test_loss')
    
        @tf.function
        def train_step(self, mini_batch):
            inputs = [mini_batch[0]]
            labels = mini_batch[1]
            with tf.GradientTape() as tape:
                pred = self.model(inputs, training=True)
                loss = self.loss(labels, pred)
                total_loss = loss
                if len(self.model.losses) > 0:
                    reg_loss = tf.math.add_n(self.model.losses)
                    total_loss = loss + reg_loss
            gradients = tape.gradient(total_loss, self.model.trainable_variables)
            self.optimizer.apply_gradients(zip(gradients, self.model.trainable_variables))
            if TRACK_MOVING_AVERAGE:
                self.ema.apply(self.model.trainable_variables)
    
            self.train_loss(loss)
            self.train_accuracy(labels, pred)
    
            return loss
    
        @tf.function
        def test_step(self, mini_batch):
            inputs = [mini_batch[0]]
            labels = mini_batch[1]
            pred = self.model(inputs, training=False)
            t_loss = self.loss(labels, pred)
    
            self.test_loss(t_loss)
            self.test_accuracy(labels, pred)
    
        def predict(self, mini_batch):
            inputs = [mini_batch[0]]
            labels = mini_batch[1]
            pred = self.model(inputs, training=False)
            t_loss = self.loss(labels, pred)
    
            self.test_labels.append(labels)
            self.test_preds.append(pred.numpy())
    
            self.test_loss(t_loss)
            self.test_accuracy(labels, pred)
    
        def reset_test_metrics(self):
            self.test_loss.reset_states()
            self.test_accuracy.reset_states()
    
        def get_metrics(self):
            recall = self.test_recall.result()
            precsn = self.test_precision.result()
            f1 = 2 * (precsn * recall) / (precsn + recall)
    
            tn = self.test_true_neg.result()
            tp = self.test_true_pos.result()
            fn = self.test_false_neg.result()
            fp = self.test_false_pos.result()
    
            mcc = ((tp * tn) - (fp * fn)) / np.sqrt((tp + fp) * (tp + fn) * (tn + fp) * (tn + fn))
            return f1, mcc
    
        def do_training(self, ckpt_dir=None):
    
            if ckpt_dir is None:
                if not os.path.exists(modeldir):
                    os.mkdir(modeldir)
                ckpt = tf.train.Checkpoint(step=tf.Variable(1), model=self.model)
                ckpt_manager = tf.train.CheckpointManager(ckpt, modeldir, max_to_keep=3)
            else:
                ckpt = tf.train.Checkpoint(step=tf.Variable(1), model=self.model)
                ckpt_manager = tf.train.CheckpointManager(ckpt, ckpt_dir, max_to_keep=3)
    
            self.writer_train = tf.summary.create_file_writer(os.path.join(logdir, 'plot_train'))
            self.writer_valid = tf.summary.create_file_writer(os.path.join(logdir, 'plot_valid'))
            self.writer_train_valid_loss = tf.summary.create_file_writer(os.path.join(logdir, 'plot_train_valid_loss'))
    
            step = 0
            total_time = 0
            best_test_loss = np.finfo(dtype=np.float).max
    
            if EARLY_STOP:
                es = EarlyStop()
    
            for epoch in range(NUM_EPOCHS):
                self.train_loss.reset_states()
                self.train_accuracy.reset_states()
    
                t0 = datetime.datetime.now().timestamp()
    
                proc_batch_cnt = 0
                n_samples = 0
    
                for data, label in self.train_dataset:
                    trn_ds = tf.data.Dataset.from_tensor_slices((data, label))
                    trn_ds = trn_ds.batch(BATCH_SIZE)
                    for mini_batch in trn_ds:
                        if self.learningRateSchedule is not None:
                            loss = self.train_step(mini_batch)
    
                        if (step % 100) == 0:
    
                            with self.writer_train.as_default():
                                tf.summary.scalar('loss_trn', loss.numpy(), step=step)
                                tf.summary.scalar('learning_rate', self.optimizer._decayed_lr('float32').numpy(), step=step)
                                tf.summary.scalar('num_train_steps', step, step=step)
                                tf.summary.scalar('num_epochs', epoch, step=step)
    
                            self.reset_test_metrics()
                            for data_tst, label_tst in self.test_dataset:
                                tst_ds = tf.data.Dataset.from_tensor_slices((data_tst, label_tst))
                                tst_ds = tst_ds.batch(BATCH_SIZE)
                                for mini_batch_test in tst_ds:
                                    self.test_step(mini_batch_test)
    
                            with self.writer_valid.as_default():
                                tf.summary.scalar('loss_val', self.test_loss.result(), step=step)
                                tf.summary.scalar('acc_val', self.test_accuracy.result(), step=step)
    
                            with self.writer_train_valid_loss.as_default():
                                tf.summary.scalar('loss_trn', loss.numpy(), step=step)
                                tf.summary.scalar('loss_val', self.test_loss.result(), step=step)
    
                            print('****** test loss, acc, lr: ', self.test_loss.result().numpy(), self.test_accuracy.result().numpy(),
                                  self.optimizer._decayed_lr('float32').numpy())
    
                        step += 1
                        print('train loss: ', loss.numpy())
    
                    proc_batch_cnt += 1
                    n_samples += data.shape[0]
                    print('proc_batch_cnt: ', proc_batch_cnt, n_samples)
    
                t1 = datetime.datetime.now().timestamp()
                print('End of Epoch: ', epoch+1, 'elapsed time: ', (t1-t0))
                total_time += (t1-t0)
    
                self.reset_test_metrics()
                for data, label in self.test_dataset:
                    ds = tf.data.Dataset.from_tensor_slices((data, label))
                    ds = ds.batch(BATCH_SIZE)
                    for mini_batch in ds:
                        self.test_step(mini_batch)
    
                print('loss, acc: ', self.test_loss.result().numpy(), self.test_accuracy.result().numpy())
                print('------------------------------------------------------')
    
                tst_loss = self.test_loss.result().numpy()
                if tst_loss < best_test_loss:
                    best_test_loss = tst_loss
                    ckpt_manager.save()
    
                if EARLY_STOP and es.check_stop(tst_loss):
                    break
    
            print('total time: ', total_time)
            self.writer_train.close()
            self.writer_valid.close()
            self.writer_train_valid_loss.close()
    
        def build_model(self):
            self.build_espcn()
            self.model = tf.keras.Model(self.inputs, self.logits)
    
        def restore(self, ckpt_dir):
    
            ckpt = tf.train.Checkpoint(step=tf.Variable(1), model=self.model)
            ckpt_manager = tf.train.CheckpointManager(ckpt, ckpt_dir, max_to_keep=3)
            ckpt.restore(ckpt_manager.latest_checkpoint)
    
            self.reset_test_metrics()
    
            for data, label in self.test_dataset:
                ds = tf.data.Dataset.from_tensor_slices((data, label))
                ds = ds.batch(BATCH_SIZE)
                for mini_batch_test in ds:
                    self.predict(mini_batch_test)
    
            print('loss, acc: ', self.test_loss.result().numpy(), self.test_accuracy.result().numpy())
    
        def do_evaluate(self, data, ckpt_dir):
    
            ckpt = tf.train.Checkpoint(step=tf.Variable(1), model=self.model)
            ckpt_manager = tf.train.CheckpointManager(ckpt, ckpt_dir, max_to_keep=3)
    
            ckpt.restore(ckpt_manager.latest_checkpoint)
    
            self.reset_test_metrics()
    
            pred = self.model([data], training=False)
            self.test_probs = pred
            pred = pred.numpy()
    
            return pred
    
        def run(self, directory, ckpt_dir=None, num_data_samples=50000):
            train_data_files = glob.glob(directory+'data_train_*.npy')
            valid_data_files = glob.glob(directory+'data_valid_*.npy')
            train_data_files = train_data_files[::2]
            valid_data_files = valid_data_files[::2]
    
            self.setup_pipeline(train_data_files, valid_data_files, num_data_samples)
            self.build_model()
            self.build_training()
            self.build_evaluation()
            self.do_training(ckpt_dir=ckpt_dir)
    
        def run_restore(self, directory, ckpt_dir):
            valid_data_files = glob.glob(directory + 'data_*.npy')
            self.num_data_samples = 1000
            self.setup_test_pipeline(valid_data_files)
            self.build_model()
            self.build_training()
            self.build_evaluation()
            self.restore(ckpt_dir)
    
        def run_evaluate(self, data, ckpt_dir):
            self.num_data_samples = 80000
            self.build_model()
            self.build_training()
            self.build_evaluation()
            return self.do_evaluate(data, ckpt_dir)
    
    
    def run_restore_static(directory, ckpt_dir):
        nn = ESPCN()
        nn.run_restore(directory, ckpt_dir)
    
    
    def run_evaluate_static(in_file, out_file, ckpt_dir):
        N = 8
        sub_y, sub_x = (N+1) * 128, (N+1) * 128
        y_0, x_0, = 2500 - int(sub_y/2), 2500 - int(sub_x/2)
    
        slc_y_2, slc_x_2 = slice(1, 128*N + 6, 2), slice(1, 128*N + 6, 2)
        y_2, x_2 = np.arange((128*N)/2 + 3), np.arange((128*N)/2 + 3)
        t, s = np.arange(1, (128*N)/2 + 2, 0.5), np.arange(1, (128*N)/2 + 2, 0.5)
    
        h5f = h5py.File(in_file, 'r')
        grd_a = get_grid_values_all(h5f, 'temp_11_0um_nom')
        grd_a = grd_a[y_0:y_0+sub_y, x_0:x_0+sub_x]
        grd_a = grd_a[slc_y_2, slc_x_2]
        grd_a = normalize(grd_a, 'temp_11_0um_nom', mean_std_dct)
        grd_a = resample_2d_linear_one(x_2, y_2, grd_a, t, s)
    
        grd_b = get_grid_values_all(h5f, 'refl_0_65um_nom')
        grd_b = grd_b[y_0:y_0+sub_y, x_0:x_0+sub_x]
        grd_b = grd_b[slc_y_2, slc_x_2]
        grd_b = normalize(grd_b, 'refl_0_65um_nom', mean_std_dct)
        grd_b = resample_2d_linear_one(x_2, y_2, grd_b, t, s)
    
        grd_c = get_grid_values_all(h5f, label_param)
        grd_c = grd_c[y_0:y_0+sub_y, x_0:x_0+sub_x]
        grd_c = grd_c[slc_y_2, slc_x_2]
        if label_param != 'cloud_fraction':
            grd_c = normalize(grd_c, label_param, mean_std_dct)
        grd_c = resample_2d_linear_one(x_2, y_2, grd_c, t, s)
    
        data = np.stack([grd_a, grd_b, grd_c], axis=2)
        data = np.expand_dims(data, axis=0)
    
        nn = ESPCN()
        out_sr = nn.run_evaluate(data, ckpt_dir)
        if label_param != 'cloud_fraction':
            out_sr = denormalize(out_sr, label_param, mean_std_dct)
        if out_file is not None:
            np.save(out_file, out_sr)
        else:
            return out_sr
    
    
    if __name__ == "__main__":
        nn = ESPCN()
        nn.run('matchup_filename')