Skip to content
Snippets Groups Projects
Select Git revision
  • cab215cf33f63374ec7179c56b93db85efe9d279
  • master default protected
  • use_flight_altitude
  • distribute
4 results

viirs_l1b_l2.py

Blame
  • viirs_l1b_l2.py 14.16 KiB
    import numpy as np
    import h5py
    from util.util import get_grid_values, get_grid_values_all, is_night, is_day, compute_lwc_iwc
    import glob
    from aeolus.datasource import CLAVRx_VIIRS
    from icing.moon_phase import *
    
    keep_out_opd = ['/ships19/cloud/scratch/cphillips/clavrx/run_viirs_superres/sites_super_l2/arm/2019/11/02/clavrx_VNP02IMG.A2019306.1912.001.2019307003236.uwssec.nc',
                    '/ships19/cloud/scratch/cphillips/clavrx/run_viirs_superres/sites_super_l2/arm/2019/04/13/clavrx_VNP02IMG.A2019103.1918.001.2019104005120.uwssec.nc',
                    '/ships19/cloud/scratch/cphillips/clavrx/run_viirs_superres/sites_super_l2/sioux_falls/2019/05/25/clavrx_VNP02IMG.A2019145.1936.001.2019146005424.uwssec.nc',
                    '/ships19/cloud/scratch/cphillips/clavrx/run_viirs_superres/sites_super_l2/sioux_falls/2019/11/01/clavrx_VNP02IMG.A2019305.1936.001.2019306005913.uwssec.nc',
                    '/ships19/cloud/scratch/cphillips/clavrx/run_viirs_superres/sites_super_l2/sioux_falls/2019/03/01/clavrx_VNP02IMG.A2019060.1930.001.2019061005942.uwssec.nc',
                    '/ships19/cloud/scratch/cphillips/clavrx/run_viirs_superres/sites_super_l2/table_mountain/2019/12/01/clavrx_VNP02IMG.A2019335.2012.001.2019336013827.uwssec.nc',
                    '/ships19/cloud/scratch/cphillips/clavrx/run_viirs_superres/sites_super_l2/table_mountain/2019/05/18/clavrx_VNP02IMG.A2019138.2006.001.2019139013059.uwssec.nc',
                    '/ships19/cloud/scratch/cphillips/clavrx/run_viirs_superres/sites_super_l2/fort_peck/2019/01/28/clavrx_VNP02IMG.A2019028.1930.001.2019029005408.uwssec.nc',
                    '/ships19/cloud/scratch/cphillips/clavrx/run_viirs_superres/sites_super_l2/fort_peck/2019/08/08/clavrx_VNP02IMG.A2019220.1930.001.2019221010714.uwssec.nc',
                    '/ships19/cloud/scratch/cphillips/clavrx/run_viirs_superres/sites_super_l2/madison/2019/10/13/clavrx_VNP02IMG.A2019286.1848.001.2019287001722.uwssec.nc',
                    '/ships19/cloud/scratch/cphillips/clavrx/run_viirs_superres/sites_super_l2/madison/2019/03/20/clavrx_VNP02IMG.A2019079.1830.001.2019079235918.uwssec.nc',
                    '/ships19/cloud/scratch/cphillips/clavrx/run_viirs_superres/sites_super_l2/madison/2019/12/26/clavrx_VNP02IMG.A2019360.1900.001.2019361001327.uwssec.nc',
                    '/ships19/cloud/scratch/cphillips/clavrx/run_viirs_superres/sites_super_l2/desert_rock/2019/02/05/clavrx_VNP02IMG.A2019036.2018.001.2019037030301.uwssec.nc',
                    '/ships19/cloud/scratch/cphillips/clavrx/run_viirs_superres/sites_super_l2/desert_rock/2019/03/30/clavrx_VNP02IMG.A2019089.2024.001.2019090015614.uwssec.nc',
                    '/ships19/cloud/scratch/cphillips/clavrx/run_viirs_superres/sites_super_l2/bondville_il/2019/11/03/clavrx_VNP02IMG.A2019307.1854.001.2019308001716.uwssec.nc',
                    '/ships19/cloud/scratch/cphillips/clavrx/run_viirs_superres/sites_super_l2/goodwin_creek/2019/04/15/clavrx_VNP02IMG.A2019105.1842.001.2019106001003.uwssec.nc',
                    '/ships19/cloud/scratch/cphillips/clavrx/run_viirs_superres/sites_super_l2/penn_state/2019/07/18/clavrx_VNP02IMG.A2019199.1742.001.2019199230925.uwssec.nc',
                    '/ships19/cloud/scratch/cphillips/clavrx/run_viirs_superres/sites_super_l2/penn_state/2019/02/02/clavrx_VNP02IMG.A2019033.1754.001.2019034011318.uwssec.nc']
    
    keep_out = keep_out_opd
    
    target_param = 'cloud_probability'
    # target_param = 'cld_opd_dcomp'
    
    # group_name = ''
    group_name = 'super/'
    # l2_params = [group_name+'temp_11_0um_nom', group_name+'refl_0_65um_nom', group_name+target_param]
    l2_params = [group_name+'temp_11_0um', group_name+'refl_0_65um', group_name+target_param]
    
    # solzen_name = group_name + 'solar_zenith_angle'
    solzen_name = group_name + 'solar_zenith'
    
    label_params = l2_params
    data_params = l2_params
    
    param_idx = data_params.index(group_name + target_param)
    
    # range = [0.0, 1.0]
    cld_prob_norm_hist = [0.34458323, 0.03729378, 0.01817725, 0.01246574, 0.00991681, 0.00826515, 0.00785976, 0.00595133,
                          0.00567965, 0.00579926, 0.00642895, 0.00797761, 0.01218471, 0.51741677]
    
    # range = [0.0, 160.0]
    cld_opd_norm_hist = [7.31926378e-01, 9.52482193e-02, 4.62747706e-02, 3.15450036e-02, 1.98358694e-02, 1.33123841e-02,
                         1.03378429e-02, 7.95560979e-03, 5.77925319e-03, 4.82856215e-03, 3.31576300e-03, 2.86789405e-03,
                         2.50456177e-03, 1.79184632e-03, 1.51077739e-03, 1.29144749e-03, 9.20514553e-04, 7.47183923e-04,
                         6.50404531e-04, 1.73557144e-02]
    
    
    def is_missing(p_idx, tile):
        keep = np.invert(np.isnan(tile[p_idx, ]))
        if np.sum(keep) / keep.size < 0.98:
            return True
    
    
    def keep_tile(p_idx, tile):
        grd_k = tile[p_idx, ].copy()
    
        if target_param == 'cloud_probability':
            grd_k = process_cld_prob(grd_k)
        elif target_param == 'cld_opd_dcomp':
            grd_k = process_cld_opd(grd_k)
    
        if grd_k is not None:
            tile[p_idx, ] = grd_k
            return tile
        else:
            return None
    
    
    def process_cld_prob(grd_k):
        keep = np.invert(np.isnan(grd_k))
        num_keep = np.sum(keep)
        keep_clr = np.where(keep, grd_k < 0.30, False)
        keep_cld = np.where(keep, grd_k > 0.70, False)
        frac_clr = np.sum(keep_clr)/num_keep
        frac_cld = np.sum(keep_cld)/num_keep
        if not (frac_clr >= 0.22 and frac_cld >= 0.22):
            return None
        grd_k = np.where(np.invert(keep), 0, grd_k)  # Convert NaN to 0
        return grd_k
    
    
    def process_cld_opd(grd_k):
        keep = np.invert(np.isnan(grd_k))
        num_keep = np.sum(keep)
        grd_k = np.where(np.invert(keep), 0, grd_k)
        keep = np.where(keep, np.logical_and(0.1 < grd_k, grd_k < 158.0), False)
        frac_keep = np.sum(keep)/num_keep
        if frac_keep < 0.60:
            return None
        return grd_k
    
    
    def run_all(directory, out_directory, day_night='ANY', start=10):
        cnt = start
        total_num_train_samples = 0
        total_num_valid_samples = 0
        total_num_not_missing = 0
        num_keep_x_tiles = 14
    
        # pattern = 'clavrx_VNP02MOD*.highres.nc.level2.nc'
        pattern = 'clavrx_*.nc'
        path = directory + '**' + '/' + pattern
    
        all_files = glob.glob(path, recursive=True)
        data_files = [f for f in all_files if f not in keep_out]
    
        data_valid_tiles = []
        data_train_tiles = []
        f_cnt = 0
    
        num_files = len(data_files)
    
        print('Start, number of files: ', num_files)
    
        for idx, data_f in enumerate(data_files):
            # if idx % 4 == 0:  # if we want to skip some files
            if True:
                try:
                    data_h5f = h5py.File(data_f, 'r')
                except:
                    print('cant open file: ', data_f)
                    continue
    
                try:
                    num_not_missing = run(data_h5f, data_params, data_train_tiles, data_valid_tiles, num_keep_x_tiles=num_keep_x_tiles, tile_width=128, kernel_size=11, day_night=day_night)
                except Exception as e:
                    print(e)
                    data_h5f.close()
                    continue
                print(data_f)
                f_cnt += 1
                data_h5f.close()
    
                total_num_not_missing += num_not_missing
    
                if len(data_train_tiles) == 0 and len(data_valid_tiles) == 0:
                    continue
    
                if (f_cnt % 20) == 0:
                    num_valid_samples = 0
                    if len(data_valid_tiles) > 0:
                        data_valid = np.stack(data_valid_tiles)
                        np.save(out_directory + 'data_valid_' + str(cnt), data_valid)
                        num_valid_samples = data_valid.shape[0]
    
                    num_train_samples = 0
                    if len(data_train_tiles) > 0:
                        data_train = np.stack(data_train_tiles)
                        np.save(out_directory+'data_train_' + str(cnt), data_train)
                        num_train_samples = data_train.shape[0]
    
                    data_valid_tiles = []
                    data_train_tiles = []
    
                    print('  num_train_samples, num_valid_samples, progress % : ', num_train_samples, num_valid_samples, int((f_cnt/num_files)*100))
                    total_num_train_samples += num_train_samples
                    total_num_valid_samples += num_valid_samples
                    print('total_num_train_samples, total_num_valid_samples, total_num_not_missing: ',
                          total_num_train_samples, total_num_valid_samples, total_num_not_missing)
                    print('---------------------------------------------------------')
    
                    cnt += 1
    
        # Write out leftover, if any. Maybe make this better someday
        num_valid_samples = 0
        if len(data_valid_tiles) > 0:
            data_valid = np.stack(data_valid_tiles)
            np.save(out_directory + 'data_valid_' + str(cnt), data_valid)
            num_valid_samples = data_valid.shape[0]
    
        num_train_samples = 0
        if len(data_train_tiles) > 0:
            data_train = np.stack(data_train_tiles)
            np.save(out_directory + 'data_train_' + str(cnt), data_train)
            num_train_samples = data_train.shape[0]
    
        print('  num_train_samples, num_valid_samples, progress % : ', num_train_samples, num_valid_samples,
              int((f_cnt / num_files) * 100))
        total_num_train_samples += num_train_samples
        total_num_valid_samples += num_valid_samples
        print('total_num_train_samples, total_num_valid_samples, total_num_not_missing: ',
              total_num_train_samples, total_num_valid_samples, total_num_not_missing)
        print('---------------------------------------------------------')
    
        print('*** Done, total_num_train_samples, total_num_valid_samples: ', total_num_train_samples, total_num_valid_samples)
    
    
    #  tile_width: Must be even!
    #  kernel_size: Must be odd!
    def run(data_h5f, param_s, train_tiles, valid_tiles, num_keep_x_tiles=8, tile_width=64, kernel_size=9, day_night='ANY'):
    
        border = int((kernel_size - 1)/2)
    
        param_name = param_s[0]
    
        num_lines = data_h5f[param_name].shape[0]
        num_pixels = data_h5f[param_name].shape[1]  # Must be even
    
        if day_night != 'ANY':
            solzen = get_grid_values(data_h5f, solzen_name, 0, 0, None, num_lines, num_pixels)
    
        grd_s = []
        for param in param_s:
            try:
                grd = get_grid_values(data_h5f, param, 0, 0, None, num_lines, num_pixels)
                grd_s.append(grd)
            except Exception as e:
                print(e)
                return
        data = np.stack(grd_s)
    
        tile_width += 2 * border
    
        i_skip = tile_width
        j_skip = tile_width
        i_start = int(num_pixels / 2) - int((num_keep_x_tiles * tile_width) / 2)
        j_start = 0
    
        num_y_tiles = int(num_lines / tile_width) - 1
    
        tiles = []
        num_not_missing = 0
    
        for j in range(num_y_tiles):
            j_a = j_start + j * j_skip
            j_b = j_a + tile_width
    
            for i in range(num_keep_x_tiles):
                i_a = i_start + i * i_skip
                i_b = i_a + tile_width
    
                if day_night == 'DAY' and not is_day(solzen[j_a:j_b, i_a:i_b]):
                    continue
                elif day_night == 'NIGHT' and is_day(solzen[j_a:j_b, i_a:i_b]):
                    continue
    
                nda = data[:, j_a:j_b, i_a:i_b]
                if is_missing(param_idx, nda):
                    continue
                num_not_missing += 1
    
                nda = keep_tile(param_idx, nda)
                if nda is not None:
                    tiles.append(nda)
    
        num_tiles = len(tiles)
        num_valid = int(num_tiles * 0.10)
        num_train = num_tiles - num_valid
    
        for k in range(num_train):
            train_tiles.append(tiles[k])
        for k in range(num_valid):
            valid_tiles.append(tiles[num_train + k])
    
        return num_not_missing
    
    
    def scan(directory):
    
        data_src = CLAVRx_VIIRS(directory)
        files = data_src.flist
    
        for idx, file in enumerate(files):
            h5f = h5py.File(file, 'r')
            ts = data_src.ftimes[idx][0]
            try:
                solzen = get_grid_values_all(h5f, 'solar_zenith_angle')
            except Exception as e:
                # print(e)
                h5f.close()
                continue
    
            # if is_day(solzen) and moon_phase(ts):
            if is_night(solzen) and moon_phase(ts):
                print(file)
            h5f.close()
    
    
    def scan_for_location(txt_file, lon_range=[111.0, 130.0], lat_range=[14.0, 32.0]):
        with open(txt_file) as file:
            for idx, fpath in enumerate(file):
                fpath = fpath.strip()
                h5f = h5py.File(fpath, 'r')
                try:
                    lon_s = get_grid_values_all(h5f, 'longitude', stride=4)
                    lat_s = get_grid_values_all(h5f, 'latitude', stride=4)
                    c_lon, c_lat = lon_s[406, 400], lat_s[406, 400]
                    if (lon_range[0] < c_lon < lon_range[1]) and (lat_range[0] < c_lat < lat_range[1]):
                        print(fpath)
    
                except Exception as e:
                    # print(e)
                    h5f.close()
                    continue
    
    
    def test_nlcomp(file):
        h5f = h5py.File(file, 'r')
    
        cld_phs = get_grid_values_all(h5f, 'cloud_phase', scale_factor_name=None, range_name=None)
        keep_0 = np.invert(np.isnan(cld_phs))
    
        reff = get_grid_values_all(h5f, 'cld_reff_nlcomp')
        keep_1 = np.invert(np.isnan(reff))
    
        opd = get_grid_values_all(h5f, 'cld_opd_nlcomp')
        keep_2 = np.invert(np.isnan(opd))
    
        cld_dz = get_grid_values_all(h5f, 'cld_geo_thick')
        keep_3 = np.logical_and(np.invert(np.isnan(cld_dz)), cld_dz > 5.0)
    
        keep = keep_0 & keep_1 & keep_2 & keep_3
    
        cld_phs = cld_phs[keep]
        reff = reff[keep]
        opd = opd[keep]
        cld_dz = cld_dz[keep]
    
        lwc_c, iwc_c = compute_lwc_iwc(cld_phs, reff, opd, cld_dz)
    
        return lwc_c, iwc_c
    
    
    # def run_mean_std(directory):
    #
    #     data_dct = {name: [] for name in mod_res_params}
    #     mean_dct = {name: 0 for name in mod_res_params}
    #     std_dct = {name: 0 for name in mod_res_params}
    #
    #     for p in os.scandir(directory):
    #         if not p.is_dir():
    #             continue
    #         mod_files = glob.glob(directory+p.name+'/'+'VNP02MOD*.uwssec.nc')
    #
    #         for idx, mfile in enumerate(mod_files):
    #             if idx % 8 == 0:
    #                 h5f = h5py.File(mfile, 'r')
    #                 for param in mod_res_params:
    #                     name = 'observation_data/'+param
    #                     gvals = get_grid_values_all(h5f, name, range_name=None, stride=10)
    #                     data_dct[param].append(gvals.flatten())
    #                 print(mfile)
    #                 h5f.close()
    #
    #     for param in mod_res_params:
    #         data = data_dct[param]
    #         data = np.concatenate(data)
    #
    #         mean_dct[param] = np.nanmean(data)
    #         std_dct[param] = np.nanstd(data)