Skip to content
Snippets Groups Projects
quantile_regression.py 3.79 KiB
import tensorflow as tf

import numpy as np
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split

def bulk_quantile_loss():
    def loss(y_true, y_pred):
        q = np.array([.01, .02, .05, .1, .2, .3, .4, .5, .6, .7, .8, .9, .95, .98, .99])
        e = y_true - y_pred
        return tf.reduce_mean(tf.maximum(q * e, (q - 1) * e), axis=-1)
    return loss

# Define the custom quantile loss function
def quantile_loss(q):
    def loss(y_true, y_pred):
        e = y_true - y_pred
        return tf.reduce_mean(tf.maximum(q * e, (q - 1) * e))
    return loss

def true_func(x):
    # Y = 2 + 1.5 * X + epsilon  # Linear relationship with variance increasing
    # Y = 1 + np.exp(X / 4) + epsilon
    # Y = 1 + np.exp(X / 4) + np.sin((2*np.pi/5)*X)
    return 1 + np.exp(x / 4) + 3*np.sin((2*np.pi/5)*x)

# Generate synthetic dataset
def make_data(num_points=1000):
    np.random.seed(42)
    X = np.random.rand(num_points, 1) * 10
    # epsilon = np.random.normal(0, X/2, size=(num_points, 1))  # Noise increasing with X
    epsilon = np.random.normal(0, 0.25 + X/5, size=(num_points, 1))
    Y = true_func(X)
    Y_eps = Y + epsilon

    # Split into training and test sets
    X_train, X_test, Y_train, Y_test = train_test_split(X, Y_eps, test_size=0.2, random_state=42)
    return X_train, X_test, Y_train, Y_test, X, Y


def build_model(loss=tf.keras.losses.MeanSquaredError()):
    model = tf.keras.models.Sequential([
        tf.keras.layers.InputLayer(shape=(1,)),
        tf.keras.layers.Dense(64, activation='relu'),
        tf.keras.layers.Dense(64, activation='relu'),
        tf.keras.layers.Dense(64, activation='relu'),
        tf.keras.layers.Dense(1)  # Output layer
    ])
    model.compile(optimizer='adam', loss=loss)
    return model


def run(num_points=1000, num_plot_pts=200):
    # Define quantiles
    quantiles = [0.05, 0.5, 0.95]
    models = {}

    X_train, X_test, Y_train, Y_test, X, Y = make_data(num_points=num_points)
    print(X_train.shape, Y_train.shape, X_test.shape, Y_test.shape)

    # Train a model for each quantile
    for q in quantiles:
        print(f"Training quantile {q} model...")
        models[q] = build_model(loss=quantile_loss(q))
        models[q].fit(X_train, Y_train, epochs=100, batch_size=32, verbose=0)

    # Generate test data predictions
    X_range = np.linspace(X.min(), X.max(), num_plot_pts).reshape(-1, 1)
    predictions = {q: models[q].predict(X_range) for q in quantiles}

    model = build_model(loss=tf.keras.losses.MeanAbsoluteError())
    print(f"Training MAE model...")
    model.fit(X_train, Y_train, epochs=100, batch_size=32, verbose=0)
    mae_predictions = model.predict(X_range)

    model = build_model()
    print(f"Training MSE model...")
    model.fit(X_train, Y_train, epochs=100, batch_size=32, verbose=0)
    mse_predictions = model.predict(X_range)

    model = build_model(loss=bulk_quantile_loss())
    print(f"Training bulk quantile model...")
    model.fit(X_train, Y_train, epochs=100, batch_size=32, verbose=0)
    bulk_predictions = model.predict(X_range)

    # Plot the results
    plt.figure(figsize=(8, 6))
    plt.scatter(X_test[::4, 0], Y_test[::4, 0], alpha=0.3, label="Test Data")
    plt.plot(X_range, predictions[0.05], label="Quantile 0.05", color='red')
    plt.plot(X_range, predictions[0.5], label="Quantile 0.5 (Median)", color='green')
    plt.plot(X_range, predictions[0.95], label="Quantile 0.95", color='blue')
    plt.plot(X_range, mae_predictions, label="MAE", color='magenta')
    plt.plot(X_range, mse_predictions, label="MSE", color='cyan')
    plt.plot(X_range, bulk_predictions, label="Bulk Quantile Model (Wimmers)", color='orange')
    plt.plot(X_range, true_func(X_range), label="True Function", color='black')
    plt.xlabel("X")
    plt.ylabel("Y")
    plt.legend()
    plt.title("Quantile Regression")
    plt.show()