Skip to content
Snippets Groups Projects
Select Git revision
  • 8de033d05afe023707bec3ce8ff4c79accc03c0e
  • master default protected
  • use_flight_altitude
  • distribute
4 results

unet.py

Blame
  • user avatar
    tomrink authored
    667c0cbe
    History
    unet.py 35.87 KiB
    import glob
    import tensorflow as tf
    from util.setup import logdir, modeldir, cachepath, now, ancillary_path, home_dir
    from util.util import EarlyStop, normalize, make_for_full_domain_predict, scale
    
    import os, datetime
    import numpy as np
    import pickle
    import h5py
    
    # L1B M/I-bands: /apollo/cloud/scratch/cwhite/VIIRS_HRES/2019/2019_01_01/
    # CLAVRx: /apollo/cloud/scratch/Satellite_Output/VIIRS_HRES/2019/2019_01_01/
    # /apollo/cloud/scratch/Satellite_Output/andi/NEW/VIIRS_HRES/2019
    
    # /home/mfoster/clavrx_installations/clavrx-dev/main_src
    # viirs_nasa_hres_read_mod.f90
    # viirs_nasa_read_module.f90
    
    LOG_DEVICE_PLACEMENT = False
    
    PROC_BATCH_SIZE = 10
    PROC_BATCH_BUFFER_SIZE = 50000
    
    NumClasses = 2
    if NumClasses == 2:
        NumLogits = 1
    else:
        NumLogits = NumClasses
    
    BATCH_SIZE = 128
    NUM_EPOCHS = 40
    
    TRACK_MOVING_AVERAGE = False
    EARLY_STOP = True
    
    TRIPLET = False
    CONV3D = False
    
    NOISE_TRAINING = False
    NOISE_STDDEV = 0.10
    DO_AUGMENT = False
    
    mean_std_file = home_dir+'/viirs_emis_rad_mean_std.pkl'
    f_stats = open(mean_std_file, 'rb')
    mean_std_dct = pickle.load(f_stats)
    f_stats.close()
    
    param = 'M15'
    
    # -- Zero out params (Experimentation Only) ------------
    zero_out_params = ['cld_reff_dcomp', 'cld_opd_dcomp', 'iwc_dcomp', 'lwc_dcomp']
    DO_ZERO_OUT = False
    
    
    def build_conv2d_block(conv, num_filters, activation, block_name, padding='SAME'):
        with tf.name_scope(block_name):
            skip = conv
    
            conv = tf.keras.layers.Conv2D(num_filters, kernel_size=5, strides=1, padding=padding, activation=activation)(conv)
            conv = tf.keras.layers.MaxPool2D(padding=padding)(conv)
            conv = tf.keras.layers.BatchNormalization()(conv)
            print(conv.shape)
    
            skip = tf.keras.layers.Conv2D(num_filters, kernel_size=3, strides=1, padding=padding, activation=None)(skip)
            skip = tf.keras.layers.MaxPool2D(padding=padding)(skip)
            skip = tf.keras.layers.BatchNormalization()(skip)
    
            conv = conv + skip
            conv = tf.keras.layers.LeakyReLU()(conv)
            print(conv.shape)
    
        return conv
    
    
    class UNET:
        
        def __init__(self):
    
            self.train_data = None
            self.train_label = None
            self.test_data = None
            self.test_label = None
            self.test_data_denorm = None
            
            self.train_dataset = None
            self.inner_train_dataset = None
            self.test_dataset = None
            self.eval_dataset = None
            self.X_img = None
            self.X_prof = None
            self.X_u = None
            self.X_v = None
            self.X_sfc = None
            self.inputs = []
            self.y = None
            self.handle = None
            self.inner_handle = None
            self.in_mem_batch = None
    
            self.logits = None
    
            self.predict_data = None
            self.predict_dataset = None
            self.mean_list = None
            self.std_list = None
            
            self.training_op = None
            self.correct = None
            self.accuracy = None
            self.loss = None
            self.pred_class = None
            self.variable_averages = None
    
            self.global_step = None
    
            self.writer_train = None
            self.writer_valid = None
            self.writer_train_valid_loss = None
    
            self.OUT_OF_RANGE = False
    
            self.in_mem_data_cache = {}
            self.in_mem_data_cache_test = {}
    
            self.model = None
            self.optimizer = None
            self.ema = None
            self.train_loss = None
            self.train_accuracy = None
            self.test_loss = None
            self.test_accuracy = None
            self.test_auc = None
            self.test_recall = None
            self.test_precision = None
            self.test_confusion_matrix = None
            self.test_true_pos = None
            self.test_true_neg = None
            self.test_false_pos = None
            self.test_false_neg = None
    
            self.test_labels = []
            self.test_preds = []
            self.test_probs = None
    
            self.learningRateSchedule = None
            self.num_data_samples = None
            self.initial_learning_rate = None
    
            self.data_dct = None
            self.train_data_files = None
            self.train_label_files = None
            self.test_data_files = None
            self.test_label_files = None
    
            # self.n_chans = len(self.train_params)
            self.n_chans = 1
            if TRIPLET:
                self.n_chans *= 3
            self.X_img = tf.keras.Input(shape=(None, None, self.n_chans))
    
            self.inputs.append(self.X_img)
            self.inputs.append(tf.keras.Input(shape=(None, None, 1)))
    
            self.flight_level = 0
    
            self.DISK_CACHE = False
    
            # if datapath is not None:
            #     self.DISK_CACHE = False
            #     f = open(datapath, 'rb')
            #     self.in_mem_data_cache = pickle.load(f)
            #     f.close()
    
            tf.debugging.set_log_device_placement(LOG_DEVICE_PLACEMENT)
    
        def get_in_mem_data_batch(self, idxs, is_training):
            if is_training:
                data_files = self.train_data_files
                label_files = self.train_label_files
            else:
                data_files = self.test_data_files
                label_files = self.test_label_files
    
            data_s = []
            label_s = []
            for k in idxs:
                f = data_files[k]
                nda = np.load(f)
                data_s.append(nda)
    
                f = label_files[k]
                nda = np.load(f)
                label_s.append(nda)
    
            data = np.concatenate(data_s)
            data = data[:, 0, :, :]
            data = np.expand_dims(data, axis=3)
    
            label = np.concatenate(label_s)
            label = label[:, 0, :, :]
            label = np.expand_dims(label, axis=3)
    
            data = data.astype(np.float32)
            label = label.astype(np.float32)
    
            data = normalize(data, param, mean_std_dct)
            label = normalize(label, param, mean_std_dct)
    
            if is_training and DO_AUGMENT:
                data_ud = np.flip(data, axis=1)
                label_ud = np.flip(label, axis=1)
    
                data_lr = np.flip(data, axis=2)
                label_lr = np.flip(label, axis=2)
    
                data = np.concatenate([data, data_ud, data_lr])
                label = np.concatenate([label, label_ud, label_lr])
    
            return data, data, label
    
        def get_in_mem_data_batch_train(self, idxs):
            return self.get_in_mem_data_batch(idxs, True)
    
        def get_in_mem_data_batch_test(self, idxs):
            return self.get_in_mem_data_batch(idxs, False)
    
        def get_in_mem_data_batch_eval(self, idxs):
            data = []
            for param in self.train_params:
                nda = self.data_dct[param]
                nda = normalize(nda, param, mean_std_dct)
                data.append(nda)
            data = np.stack(data)
            data = data.astype(np.float32)
            data = np.transpose(data, axes=(1, 2, 0))
            data = np.expand_dims(data, axis=0)
    
            nda = np.zeros([1])
            nda[0] = self.flight_level
            nda = tf.one_hot(nda, 5).numpy()
            nda = np.expand_dims(nda, axis=0)
            nda = np.expand_dims(nda, axis=0)
    
            return data, nda
    
        @tf.function(input_signature=[tf.TensorSpec(None, tf.int32)])
        def data_function(self, indexes):
            out = tf.numpy_function(self.get_in_mem_data_batch_train, [indexes], [tf.float32, tf.float32, tf.float32])
            return out
    
        @tf.function(input_signature=[tf.TensorSpec(None, tf.int32)])
        def data_function_test(self, indexes):
            out = tf.numpy_function(self.get_in_mem_data_batch_test, [indexes], [tf.float32, tf.float32, tf.float32])
            return out
    
        @tf.function(input_signature=[tf.TensorSpec(None, tf.int32)])
        def data_function_evaluate(self, indexes):
            # TODO: modify for user specified altitude
            out = tf.numpy_function(self.get_in_mem_data_batch_eval, [indexes], [tf.float32, tf.float32])
            return out
    
        def get_train_dataset(self, indexes):
            indexes = list(indexes)
    
            dataset = tf.data.Dataset.from_tensor_slices(indexes)
            dataset = dataset.batch(PROC_BATCH_SIZE)
            dataset = dataset.map(self.data_function, num_parallel_calls=8)
            dataset = dataset.cache()
            if DO_AUGMENT:
                dataset = dataset.shuffle(PROC_BATCH_BUFFER_SIZE)
            dataset = dataset.prefetch(buffer_size=1)
            self.train_dataset = dataset
    
        def get_test_dataset(self, indexes):
            indexes = list(indexes)
    
            dataset = tf.data.Dataset.from_tensor_slices(indexes)
            dataset = dataset.batch(PROC_BATCH_SIZE)
            dataset = dataset.map(self.data_function_test, num_parallel_calls=8)
            dataset = dataset.cache()
            self.test_dataset = dataset
    
        def get_evaluate_dataset(self, indexes):
            indexes = list(indexes)
    
            dataset = tf.data.Dataset.from_tensor_slices(indexes)
            dataset = dataset.map(self.data_function_evaluate, num_parallel_calls=8)
            self.eval_dataset = dataset
    
        # def setup_pipeline(self, data_nda, label_nda, perc=0.20):
        #
        #     num_samples = data_nda.shape[0]
        #     num_test = int(num_samples * perc)
        #     self.num_data_samples = num_samples - num_test
        #     num_train = self.num_data_samples
        #
        #     self.train_data_nda = data_nda[0:num_train]
        #     self.train_label_nda = label_nda[0:num_train]
        #     self.test_data_nda = data_nda[num_train:]
        #     self.test_label_nda = label_nda[num_train:]
        #
        #     trn_idxs = np.arange(self.train_data_nda.shape[0])
        #     tst_idxs = np.arange(self.test_data_nda.shape[0])
        #
        #     np.random.shuffle(tst_idxs)
        #
        #     self.get_train_dataset(trn_idxs)
        #     self.get_test_dataset(tst_idxs)
        #
        #     print('datetime: ', now)
        #     print('training and test data: ')
        #     print('---------------------------')
        #     print('num train samples: ', self.num_data_samples)
        #     print('BATCH SIZE: ', BATCH_SIZE)
        #     print('num test samples: ', tst_idxs.shape[0])
        #     print('setup_pipeline: Done')
    
        def setup_pipeline(self, train_data_files, train_label_files, test_data_files, test_label_files, num_train_samples):
    
            self.train_data_files = train_data_files
            self.train_label_files = train_label_files
            self.test_data_files = test_data_files
            self.test_label_files = test_label_files
    
            trn_idxs = np.arange(len(train_data_files))
            np.random.shuffle(trn_idxs)
            tst_idxs = np.arange(len(train_data_files))
    
            self.get_train_dataset(trn_idxs)
            self.get_test_dataset(tst_idxs)
    
            self.num_data_samples = num_train_samples  # approximately
    
            print('datetime: ', now)
            print('training and test data: ')
            print('---------------------------')
            print('num train samples: ', self.num_data_samples)
            print('BATCH SIZE: ', BATCH_SIZE)
            print('num test samples: ', tst_idxs.shape[0])
            print('setup_pipeline: Done')
    
        def setup_test_pipeline(self, filename_l1b, filename_l2, seed=None, shuffle=False):
    
            if filename_l1b is not None:
                self.h5f_l1b_tst = h5py.File(filename_l1b, 'r')
            if filename_l2 is not None:
                self.h5f_l2_tst = h5py.File(filename_l2, 'r')
    
            if self.h5f_l1b_tst is not None:
                h5f = self.h5f_l1b_tst
            else:
                h5f = self.h5f_l2_tst
            time = h5f['time']
            tst_idxs = np.arange(time.shape[0])
            self.num_data_samples = len(tst_idxs)
            if seed is not None:
                np.random.seed(seed)
            if shuffle:
                np.random.shuffle(tst_idxs)
    
            self.get_test_dataset(tst_idxs)
    
            print('num test samples: ', tst_idxs.shape[0])
            print('setup_test_pipeline: Done')
    
        def setup_eval_pipeline(self, data_dct, num_tiles=1):
            self.data_dct = data_dct
            idxs = np.arange(num_tiles)
            self.num_data_samples = idxs.shape[0]
    
            self.get_evaluate_dataset(idxs)
    
        def build_unet(self):
            print('build_cnn')
            # padding = "VALID"
            padding = "SAME"
    
            # activation = tf.nn.relu
            # activation = tf.nn.elu
            activation = tf.nn.leaky_relu
            momentum = 0.99
    
            num_filters = self.n_chans * 8
    
            input_2d = self.inputs[0]
            print('input: ', input_2d.shape)
            conv = tf.keras.layers.Conv2D(num_filters, kernel_size=7, strides=1, padding='VALID', activation=None)(input_2d)
            conv = conv[:, 6:70, 6:70, :]
            print('Contracting Branch -----------')
            print('input: ', conv.shape)
            skip = conv
    
            if NOISE_TRAINING:
                conv = tf.keras.layers.GaussianNoise(stddev=NOISE_STDDEV)(conv)
    
            # Contracting (Encoding) ------------------------------------------------------------------------------------
            conv_1 = conv
    
            conv = tf.keras.layers.Conv2D(num_filters, kernel_size=5, strides=1, padding=padding, activation=activation)(conv)
            conv = tf.keras.layers.MaxPool2D(padding=padding)(conv)
            conv = tf.keras.layers.BatchNormalization()(conv)
    
            skip = tf.keras.layers.Conv2D(num_filters, kernel_size=3, strides=1, padding=padding, activation=None)(skip)
            skip = tf.keras.layers.MaxPool2D(padding=padding)(skip)
            skip = tf.keras.layers.BatchNormalization()(skip)
    
            conv = conv + skip
            conv = tf.keras.layers.LeakyReLU()(conv)
            print('1d: ', conv.shape)
            # -----------------------------------------------------------------------------------------------------------
    
            conv_2 = conv
            skip = conv
            num_filters *= 2
            conv = tf.keras.layers.Conv2D(num_filters, kernel_size=3, strides=1, padding=padding, activation=activation)(conv)
            conv = tf.keras.layers.MaxPool2D(padding=padding)(conv)
            conv = tf.keras.layers.BatchNormalization()(conv)
    
            skip = tf.keras.layers.Conv2D(num_filters, kernel_size=3, strides=1, padding=padding, activation=None)(skip)
            skip = tf.keras.layers.MaxPool2D(padding=padding)(skip)
            skip = tf.keras.layers.BatchNormalization()(skip)
    
            conv = conv + skip
            conv = tf.keras.layers.LeakyReLU()(conv)
            print('2d: ', conv.shape)
            # ----------------------------------------------------------------------------------------------------------
    
            conv_3 = conv
            skip = conv
            num_filters *= 2
            conv = tf.keras.layers.Conv2D(num_filters, kernel_size=3, strides=1, padding=padding, activation=activation)(conv)
            conv = tf.keras.layers.MaxPool2D(padding=padding)(conv)
            conv = tf.keras.layers.BatchNormalization()(conv)
    
            skip = tf.keras.layers.Conv2D(num_filters, kernel_size=3, strides=1, padding=padding, activation=None)(skip)
            skip = tf.keras.layers.MaxPool2D(padding=padding)(skip)
            skip = tf.keras.layers.BatchNormalization()(skip)
    
            conv = conv + skip
            conv = tf.keras.layers.LeakyReLU()(conv)
            print('3d: ', conv.shape)
            # -----------------------------------------------------------------------------------------------------------
    
            conv_4 = conv
            skip = conv
            num_filters *= 2
            conv = tf.keras.layers.Conv2D(num_filters, kernel_size=3, strides=1, padding=padding, activation=activation)(conv)
            conv = tf.keras.layers.MaxPool2D(padding=padding)(conv)
            conv = tf.keras.layers.BatchNormalization()(conv)
    
            skip = tf.keras.layers.Conv2D(num_filters, kernel_size=3, strides=1, padding=padding, activation=None)(skip)
            skip = tf.keras.layers.MaxPool2D(padding=padding)(skip)
            skip = tf.keras.layers.BatchNormalization()(skip)
    
            conv = conv + skip
            conv = tf.keras.layers.LeakyReLU()(conv)
            print('4d: ', conv.shape)
    
            # Expanding (Decoding) branch -------------------------------------------------------------------------------
            print('expanding branch --------------')
    
            num_filters /= 2
            conv = tf.keras.layers.Conv2DTranspose(num_filters, kernel_size=3, strides=2, padding=padding)(conv)
            conv = tf.keras.layers.concatenate([conv, conv_4])
            conv = tf.keras.layers.Conv2D(num_filters, kernel_size=3, strides=1, padding=padding, activation=activation)(conv)
            conv = tf.keras.layers.BatchNormalization()(conv)
            print('5: ', conv.shape)
    
            num_filters /= 2
            conv = tf.keras.layers.Conv2DTranspose(num_filters, kernel_size=3, strides=2, padding=padding)(conv)
            conv = tf.keras.layers.concatenate([conv, conv_3])
            conv = tf.keras.layers.Conv2D(num_filters, kernel_size=3, strides=1, padding=padding, activation=activation)(conv)
            conv = tf.keras.layers.BatchNormalization()(conv)
            print('6: ', conv.shape)
    
            num_filters /= 2
            conv = tf.keras.layers.Conv2DTranspose(num_filters, kernel_size=3, strides=2, padding=padding)(conv)
            conv = tf.keras.layers.concatenate([conv, conv_2])
            conv = tf.keras.layers.Conv2D(num_filters, kernel_size=3, strides=1, padding=padding, activation=activation)(conv)
            conv = tf.keras.layers.BatchNormalization()(conv)
            print('7: ', conv.shape)
    
            num_filters /= 2
            conv = tf.keras.layers.Conv2DTranspose(num_filters, kernel_size=3, strides=2, padding=padding)(conv)
            print('8: ', conv.shape)
    
            conv = tf.keras.layers.Conv2DTranspose(num_filters, kernel_size=3, strides=2, padding=padding)(conv)
            print('9: ', conv.shape)
    
            # if NumClasses == 2:
            #     activation = tf.nn.sigmoid  # For binary
            # else:
            #     activation = tf.nn.softmax  # For multi-class
            activation = tf.nn.sigmoid
    
            # Called logits, but these are actually probabilities, see activation
            self.logits = tf.keras.layers.Conv2D(1, kernel_size=1, strides=1, padding=padding, name='probability', activation=activation)(conv)
    
            print(self.logits.shape)
    
        def build_upsample(self):
            print('build_upsample')
            # padding = "VALID"
            padding = "SAME"
    
            # activation = tf.nn.relu
            # activation = tf.nn.elu
            activation = tf.nn.leaky_relu
    
            num_filters = self.n_chans * 8
    
            input_2d = self.inputs[0]
            print('input: ', input_2d.shape)
    
            # Expanding (Decoding) branch -------------------------------------------------------------------------------
            print('expanding branch')
    
            conv = tf.keras.layers.Conv2DTranspose(num_filters, kernel_size=7, strides=2, padding=padding, activation=activation)(input_2d)
            conv = tf.keras.layers.BatchNormalization()(conv)
            print(conv.shape)
            conv = conv[:, 18:146, 18:146, :]
    
            num_filters /= 2
            conv = tf.keras.layers.Conv2DTranspose(num_filters, kernel_size=1, strides=1, padding=padding, activation=activation)(conv)
            print(conv.shape)
    
            num_filters /= 2
            conv = tf.keras.layers.Conv2DTranspose(num_filters, kernel_size=1, strides=1, padding=padding, activation=activation)(conv)
            print(conv.shape)
    
            # if NumClasses == 2:
            #     activation = tf.nn.sigmoid  # For binary
            # else:
            #     activation = tf.nn.softmax  # For multi-class
            activation = tf.nn.sigmoid
    
            # Called logits, but these are actually probabilities, see activation
            self.logits = tf.keras.layers.Conv2D(1, kernel_size=1, strides=1, padding=padding, name='probability', activation=activation)(conv)
    
            print(self.logits.shape)
    
            # num_filters /= 2
            # conv = tf.keras.layers.Conv2DTranspose(num_filters, kernel_size=3, strides=2, padding=padding)(conv)
            # conv = tf.keras.layers.concatenate([conv, conv_3])
            # conv = tf.keras.layers.Conv2D(num_filters, kernel_size=3, strides=1, padding=padding, activation=activation)(conv)
            # conv = tf.keras.layers.BatchNormalization()(conv)
            # print('6: ', conv.shape)
            #
            # num_filters /= 2
            # conv = tf.keras.layers.Conv2DTranspose(num_filters, kernel_size=3, strides=2, padding=padding)(conv)
            # conv = tf.keras.layers.concatenate([conv, conv_2])
            # conv = tf.keras.layers.Conv2D(num_filters, kernel_size=3, strides=1, padding=padding, activation=activation)(conv)
            # conv = tf.keras.layers.BatchNormalization()(conv)
            # print('7: ', conv.shape)
            #
            # num_filters /= 2
            # conv = tf.keras.layers.Conv2DTranspose(num_filters, kernel_size=3, strides=2, padding=padding)(conv)
            # print('8: ', conv.shape)
            #
            # conv = tf.keras.layers.Conv2DTranspose(num_filters, kernel_size=3, strides=2, padding=padding)(conv)
            # print('9: ', conv.shape)
    
        def build_training(self):
            # if NumClasses == 2:
            #     self.loss = tf.keras.losses.BinaryCrossentropy(from_logits=False)  # for two-class only
            # else:
            #     self.loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False)  # For multi-class
            self.loss = tf.keras.losses.MeanSquaredError()  # Regression
    
            # decayed_learning_rate = learning_rate * decay_rate ^ (global_step / decay_steps)
            initial_learning_rate = 0.002
            decay_rate = 0.95
            steps_per_epoch = int(self.num_data_samples/BATCH_SIZE)  # one epoch
            decay_steps = int(steps_per_epoch / 2)
            print('initial rate, decay rate, steps/epoch, decay steps: ', initial_learning_rate, decay_rate, steps_per_epoch, decay_steps)
    
            self.learningRateSchedule = tf.keras.optimizers.schedules.ExponentialDecay(initial_learning_rate, decay_steps, decay_rate)
    
            optimizer = tf.keras.optimizers.Adam(learning_rate=self.learningRateSchedule)
    
            if TRACK_MOVING_AVERAGE:
                # Not really sure this works properly (from tfa)
                # optimizer = tfa.optimizers.MovingAverage(optimizer)
                self.ema = tf.train.ExponentialMovingAverage(decay=0.9999)
    
            self.optimizer = optimizer
            self.initial_learning_rate = initial_learning_rate
    
        def build_evaluation(self):
            # self.train_loss = tf.keras.metrics.Mean(name='train_loss')
            # self.test_loss = tf.keras.metrics.Mean(name='test_loss')
            self.train_accuracy = tf.keras.metrics.MeanAbsoluteError(name='train_accuracy')
            self.test_accuracy = tf.keras.metrics.MeanAbsoluteError(name='test_accuracy')
            self.train_loss = tf.keras.metrics.Mean(name='train_loss')
            self.test_loss = tf.keras.metrics.Mean(name='test_loss')
    
            # if NumClasses == 2:
            #     self.train_accuracy = tf.keras.metrics.BinaryAccuracy(name='train_accuracy')
            #     self.test_accuracy = tf.keras.metrics.BinaryAccuracy(name='test_accuracy')
            #     self.test_auc = tf.keras.metrics.AUC(name='test_auc')
            #     self.test_recall = tf.keras.metrics.Recall(name='test_recall')
            #     self.test_precision = tf.keras.metrics.Precision(name='test_precision')
            #     self.test_true_neg = tf.keras.metrics.TrueNegatives(name='test_true_neg')
            #     self.test_true_pos = tf.keras.metrics.TruePositives(name='test_true_pos')
            #     self.test_false_neg = tf.keras.metrics.FalseNegatives(name='test_false_neg')
            #     self.test_false_pos = tf.keras.metrics.FalsePositives(name='test_false_pos')
            # else:
            #     self.train_accuracy = tf.keras.metrics.SparseCategoricalAccuracy(name='train_accuracy')
            #     self.test_accuracy = tf.keras.metrics.SparseCategoricalAccuracy(name='test_accuracy')
    
        @tf.function
        def train_step(self, mini_batch):
            inputs = [mini_batch[0], mini_batch[1]]
            labels = mini_batch[2]
            with tf.GradientTape() as tape:
                pred = self.model(inputs, training=True)
                loss = self.loss(labels, pred)
                total_loss = loss
                if len(self.model.losses) > 0:
                    reg_loss = tf.math.add_n(self.model.losses)
                    total_loss = loss + reg_loss
            gradients = tape.gradient(total_loss, self.model.trainable_variables)
            self.optimizer.apply_gradients(zip(gradients, self.model.trainable_variables))
            if TRACK_MOVING_AVERAGE:
                self.ema.apply(self.model.trainable_variables)
    
            self.train_loss(loss)
            self.train_accuracy(labels, pred)
    
            return loss
    
        @tf.function
        def test_step(self, mini_batch):
            inputs = [mini_batch[0], mini_batch[1]]
            labels = mini_batch[2]
            pred = self.model(inputs, training=False)
            t_loss = self.loss(labels, pred)
    
            self.test_loss(t_loss)
            self.test_accuracy(labels, pred)
            # if NumClasses == 2:
            #     self.test_auc(labels, pred)
            #     self.test_recall(labels, pred)
            #     self.test_precision(labels, pred)
            #     self.test_true_neg(labels, pred)
            #     self.test_true_pos(labels, pred)
            #     self.test_false_neg(labels, pred)
            #     self.test_false_pos(labels, pred)
    
        def predict(self, mini_batch):
            inputs = [mini_batch[0], mini_batch[1]]
            labels = mini_batch[2]
            pred = self.model(inputs, training=False)
            t_loss = self.loss(labels, pred)
    
            self.test_labels.append(labels)
            self.test_preds.append(pred.numpy())
    
            self.test_loss(t_loss)
            self.test_accuracy(labels, pred)
            # if NumClasses == 2:
            #     self.test_auc(labels, pred)
            #     self.test_recall(labels, pred)
            #     self.test_precision(labels, pred)
            #     self.test_true_neg(labels, pred)
            #     self.test_true_pos(labels, pred)
            #     self.test_false_neg(labels, pred)
            #     self.test_false_pos(labels, pred)
    
        def reset_test_metrics(self):
            self.test_loss.reset_states()
            self.test_accuracy.reset_states()
            # if NumClasses == 2:
            #     self.test_auc.reset_states()
            #     self.test_recall.reset_states()
            #     self.test_precision.reset_states()
            #     self.test_true_neg.reset_states()
            #     self.test_true_pos.reset_states()
            #     self.test_false_neg.reset_states()
            #     self.test_false_pos.reset_states()
    
        def get_metrics(self):
            recall = self.test_recall.result()
            precsn = self.test_precision.result()
            f1 = 2 * (precsn * recall) / (precsn + recall)
    
            tn = self.test_true_neg.result()
            tp = self.test_true_pos.result()
            fn = self.test_false_neg.result()
            fp = self.test_false_pos.result()
    
            mcc = ((tp * tn) - (fp * fn)) / np.sqrt((tp + fp) * (tp + fn) * (tn + fp) * (tn + fn))
            return f1, mcc
    
        def do_training(self, ckpt_dir=None):
    
            if ckpt_dir is None:
                if not os.path.exists(modeldir):
                    os.mkdir(modeldir)
                ckpt = tf.train.Checkpoint(step=tf.Variable(1), model=self.model)
                ckpt_manager = tf.train.CheckpointManager(ckpt, modeldir, max_to_keep=3)
            else:
                ckpt = tf.train.Checkpoint(step=tf.Variable(1), model=self.model)
                ckpt_manager = tf.train.CheckpointManager(ckpt, ckpt_dir, max_to_keep=3)
    
            self.writer_train = tf.summary.create_file_writer(os.path.join(logdir, 'plot_train'))
            self.writer_valid = tf.summary.create_file_writer(os.path.join(logdir, 'plot_valid'))
            self.writer_train_valid_loss = tf.summary.create_file_writer(os.path.join(logdir, 'plot_train_valid_loss'))
    
            step = 0
            total_time = 0
            best_test_loss = np.finfo(dtype=np.float).max
            best_test_acc = 0
            best_test_recall = 0
            best_test_precision = 0
            best_test_auc = 0
            best_test_f1 = 0
            best_test_mcc = 0
    
            if EARLY_STOP:
                es = EarlyStop()
    
            for epoch in range(NUM_EPOCHS):
                self.train_loss.reset_states()
                self.train_accuracy.reset_states()
    
                t0 = datetime.datetime.now().timestamp()
    
                proc_batch_cnt = 0
                n_samples = 0
    
                for data0, data1, label in self.train_dataset:
                    trn_ds = tf.data.Dataset.from_tensor_slices((data0, data1, label))
                    trn_ds = trn_ds.batch(BATCH_SIZE)
                    for mini_batch in trn_ds:
                        if self.learningRateSchedule is not None:
                            loss = self.train_step(mini_batch)
    
                        if (step % 100) == 0:
    
                            with self.writer_train.as_default():
                                tf.summary.scalar('loss_trn', loss.numpy(), step=step)
                                tf.summary.scalar('learning_rate', self.optimizer._decayed_lr('float32').numpy(), step=step)
                                tf.summary.scalar('num_train_steps', step, step=step)
                                tf.summary.scalar('num_epochs', epoch, step=step)
    
                            self.reset_test_metrics()
                            for data0_tst, data1_tst, label_tst in self.test_dataset:
                                tst_ds = tf.data.Dataset.from_tensor_slices((data0_tst, data1_tst, label_tst))
                                tst_ds = tst_ds.batch(BATCH_SIZE)
                                for mini_batch_test in tst_ds:
                                    self.test_step(mini_batch_test)
    
                            # if NumClasses == 2:
                            #     f1, mcc = self.get_metrics()
    
                            with self.writer_valid.as_default():
                                tf.summary.scalar('loss_val', self.test_loss.result(), step=step)
                                tf.summary.scalar('acc_val', self.test_accuracy.result(), step=step)
                                # if NumClasses == 2:
                                #     tf.summary.scalar('auc_val', self.test_auc.result(), step=step)
                                #     tf.summary.scalar('recall_val', self.test_recall.result(), step=step)
                                #     tf.summary.scalar('prec_val', self.test_precision.result(), step=step)
                                #     tf.summary.scalar('f1_val', f1, step=step)
                                #     tf.summary.scalar('mcc_val', mcc, step=step)
                                #     tf.summary.scalar('num_train_steps', step, step=step)
                                #     tf.summary.scalar('num_epochs', epoch, step=step)
    
                            with self.writer_train_valid_loss.as_default():
                                tf.summary.scalar('loss_trn', loss.numpy(), step=step)
                                tf.summary.scalar('loss_val', self.test_loss.result(), step=step)
    
                            print('****** test loss, acc, lr: ', self.test_loss.result().numpy(), self.test_accuracy.result().numpy(),
                                  self.optimizer._decayed_lr('float32').numpy())
    
                        step += 1
                        print('train loss: ', loss.numpy())
    
                    proc_batch_cnt += 1
                    n_samples += data0.shape[0]
                    print('proc_batch_cnt: ', proc_batch_cnt, n_samples)
    
                t1 = datetime.datetime.now().timestamp()
                print('End of Epoch: ', epoch+1, 'elapsed time: ', (t1-t0))
                total_time += (t1-t0)
    
                self.reset_test_metrics()
                for data0, data1, label in self.test_dataset:
                    ds = tf.data.Dataset.from_tensor_slices((data0, data1, label))
                    ds = ds.batch(BATCH_SIZE)
                    for mini_batch in ds:
                        self.test_step(mini_batch)
    
                print('loss, acc: ', self.test_loss.result().numpy(), self.test_accuracy.result().numpy())
                # if NumClasses == 2:
                #     f1, mcc = self.get_metrics()
                #     print('loss, acc, recall, precision, auc, f1, mcc: ', self.test_loss.result().numpy(), self.test_accuracy.result().numpy(),
                #           self.test_recall.result().numpy(), self.test_precision.result().numpy(), self.test_auc.result().numpy(), f1.numpy(), mcc.numpy())
                # else:
                #     print('loss, acc: ', self.test_loss.result().numpy(), self.test_accuracy.result().numpy())
                print('------------------------------------------------------')
    
                tst_loss = self.test_loss.result().numpy()
                if tst_loss < best_test_loss:
                    best_test_loss = tst_loss
                    # if NumClasses == 2:
                    #     best_test_acc = self.test_accuracy.result().numpy()
                    #     best_test_recall = self.test_recall.result().numpy()
                    #     best_test_precision = self.test_precision.result().numpy()
                    #     best_test_auc = self.test_auc.result().numpy()
                    #     best_test_f1 = f1.numpy()
                    #     best_test_mcc = mcc.numpy()
    
                    ckpt_manager.save()
    
                if self.DISK_CACHE and epoch == 0:
                    f = open(cachepath, 'wb')
                    pickle.dump(self.in_mem_data_cache, f)
                    f.close()
    
                if EARLY_STOP and es.check_stop(tst_loss):
                    break
    
            print('total time: ', total_time)
            self.writer_train.close()
            self.writer_valid.close()
            self.writer_train_valid_loss.close()
    
            if self.h5f_l1b_trn is not None:
                self.h5f_l1b_trn.close()
            if self.h5f_l1b_tst is not None:
                self.h5f_l1b_tst.close()
            if self.h5f_l2_trn is not None:
                self.h5f_l2_trn.close()
            if self.h5f_l2_tst is not None:
                self.h5f_l2_tst.close()
    
            # f = open(home_dir+'/best_stats_'+now+'.pkl', 'wb')
            # pickle.dump((best_test_loss, best_test_acc, best_test_recall, best_test_precision, best_test_auc, best_test_f1, best_test_mcc), f)
            # f.close()
    
        def build_model(self):
            self.build_unet()
            # self.build_upsample()
            self.model = tf.keras.Model(self.inputs, self.logits)
    
        def restore(self, ckpt_dir):
    
            ckpt = tf.train.Checkpoint(step=tf.Variable(1), model=self.model)
            ckpt_manager = tf.train.CheckpointManager(ckpt, ckpt_dir, max_to_keep=3)
    
            ckpt.restore(ckpt_manager.latest_checkpoint)
    
            self.reset_test_metrics()
    
            for data0, data1, label in self.test_dataset:
                ds = tf.data.Dataset.from_tensor_slices((data0, data1, label))
                ds = ds.batch(BATCH_SIZE)
                for mini_batch_test in ds:
                    self.predict(mini_batch_test)
            f1, mcc = self.get_metrics()
            print('loss, acc: ', self.test_loss.result().numpy(), self.test_accuracy.result().numpy(), self.test_recall.result().numpy(),
                  self.test_precision.result().numpy(), self.test_auc.result().numpy(), f1.numpy(), mcc.numpy())
    
            labels = np.concatenate(self.test_labels)
            self.test_labels = labels
    
            preds = np.concatenate(self.test_preds)
            self.test_probs = preds
    
            if NumClasses == 2:
                preds = np.where(preds > 0.5, 1, 0)
            else:
                preds = np.argmax(preds, axis=1)
    
            self.test_preds = preds
    
        def do_evaluate(self, prob_thresh=0.5):
    
            self.reset_test_metrics()
    
            pred_s = []
    
            for data in self.eval_dataset:
                print(data[0].shape, data[1].shape)
                pred = self.model([data])
                print(pred.shape, np.histogram(pred.numpy()))
    
            preds = np.concatenate(pred_s)
            preds = preds[:,0]
            self.test_probs = preds
    
            if NumClasses == 2:
                preds = np.where(preds > prob_thresh, 1, 0)
            else:
                preds = np.argmax(preds, axis=1)
            self.test_preds = preds
    
        def run(self, directory):
            train_data_files = glob.glob(directory+'data_train*.npy')
            valid_data_files = glob.glob(directory+'data_valid*.npy')
            train_label_files = glob.glob(directory+'label_train*.npy')
            valid_label_files = glob.glob(directory+'label_valid*.npy')
    
            train_data_files.sort()
            valid_data_files.sort()
            train_label_files.sort()
            valid_label_files.sort()
    
            self.setup_pipeline(train_data_files, train_label_files, valid_data_files, valid_label_files, 100000)
            self.build_model()
            self.build_training()
            self.build_evaluation()
            self.do_training()
    
        def run_restore(self, filename_l1b, filename_l2, ckpt_dir):
            self.setup_test_pipeline(filename_l1b, filename_l2)
            self.build_model()
            self.build_training()
            self.build_evaluation()
            self.restore(ckpt_dir)
    
            if self.h5f_l1b_tst is not None:
                self.h5f_l1b_tst.close()
            if self.h5f_l2_tst is not None:
                self.h5f_l2_tst.close()
    
        def run_evaluate(self, filename, ckpt_dir):
            data_dct, ll, cc = make_for_full_domain_predict(filename, name_list=self.train_params)
            self.setup_eval_pipeline(data_dct, len(ll))
            self.build_model()
            self.build_training()
            self.build_evaluation()
            self.do_evaluate(ckpt_dir)
    
    
    if __name__ == "__main__":
        nn = UNET()
        nn.run('matchup_filename')