infer_cloud_fraction.py 1.32 KiB
from util.setup_cloud_fraction import model_path
from aeolus.datasource import CLAVRx
import os
from deeplearning.cloud_fraction_fcn_abi import SRCNN, run_evaluate_static, run_evaluate_static_full_disk
def infer_cloud_fraction(clvrx_path, output_dir, full_disk=True):
ckpt_dir_s = os.listdir(model_path)
ckpt_dir = model_path + ckpt_dir_s[0]
clvrx_ds = CLAVRx(clvrx_path)
for fname, t_start, t_stop in clvrx_ds:
dto = clvrx_ds.get_datetime(fname)
clvrx_str_time = dto.strftime('%Y-%m-%d_%H:%M')
out_file = output_dir + 'cloud_fraction_' + clvrx_str_time
if full_disk:
run_evaluate_static_full_disk(fname, out_file, ckpt_dir)
else:
run_evaluate_static(fname, out_file, ckpt_dir)
def infer_cloud_fraction_new(clvrx_path, output_dir, full_disk=True):
ckpt_dir_s = os.listdir(model_path)
ckpt_dir = model_path + ckpt_dir_s[0]
nn = SRCNN()
nn.setup_inference(ckpt_dir)
clvrx_ds = CLAVRx(clvrx_path)
for fname, t_start, t_stop in clvrx_ds:
dto = clvrx_ds.get_datetime(fname)
clvrx_str_time = dto.strftime('%Y-%m-%d_%H:%M')
out_file = output_dir + 'cloud_fraction_' + clvrx_str_time
if full_disk:
nn.run_inference_full_disk(fname, out_file)
else:
nn.run_inference(fname, out_file)