Skip to content
Snippets Groups Projects
Select Git revision
  • 840bc5706be8b43c35d05b5553ce36e0075f0aa3
  • master default protected
  • use_flight_altitude
  • distribute
4 results

esrgan_exp.py

Blame
  • plot_cm.py 2.57 KiB
    from textwrap import wrap
    import re
    import os
    import itertools
    import numpy as np
    from sklearn.metrics import confusion_matrix
    import matplotlib.pyplot as plt
    
    
    def confusion_matrix_values(correct_labels, predict_labels):
        cm = confusion_matrix(correct_labels, predict_labels)
        return cm
    
    
    def plot_confusion_matrix(cm, labels, title='Confusion matrix', filename = 'confusion_matrix', normalize=False, axis=1):
        '''
        Parameters:
            correct_labels                  : These are your true classification categories.
            predict_labels                  : These are you predicted classification categories
            labels                          : This is a list of labels which will be used to display the axis labels
            title='Confusion matrix'        : Title for your matrix
            filename = 'confusion_matrix'   : Name for the output summay tensor
    
        Returns:
            summary: TensorFlow summary
    
        Other itema to note:
            - Depending on the number of category and the data , you may have to modify the figzie, font sizes etc.
            - Currently, some of the ticks dont line up due to rotations.
        '''
    
        if normalize:
            if axis == 1:
                cm = cm.astype('float') / cm.sum(axis=axis)[:, np.newaxis]
            elif axis == 0:
                cm = cm.astype('float') / cm.sum(axis=axis)[np.newaxis, :]
            cm *= 100
            cm = np.nan_to_num(cm, copy=True)
            cm = cm.astype('int')
    
        np.set_printoptions(precision=2)
        fig = plt.figure(figsize=(3, 3), dpi=320, facecolor='w', edgecolor='k')
        ax = fig.add_subplot(1, 1, 1)
        # im = ax.imshow(cm, cmap='Oranges')
        im = ax.imshow(cm, cmap='Blues')
    
        classes = [re.sub(r'([a-z](?=[A-Z])|[A-Z](?=[A-Z][a-z]))', r'\1 ', x) for x in labels]
        classes = ['\n'.join(wrap(l, 40)) for l in classes]
    
        tick_marks = np.arange(len(classes))
    
        ax.set_xlabel('Predicted', fontsize=7)
        ax.set_xticks(tick_marks)
        c = ax.set_xticklabels(classes, fontsize=4, rotation=-90,  ha='center')
        ax.xaxis.set_label_position('bottom')
        ax.xaxis.tick_bottom()
    
        ax.set_ylabel('True Label', fontsize=7)
        ax.set_yticks(tick_marks)
        ax.set_yticklabels(classes, fontsize=4, va ='center')
        ax.yaxis.set_label_position('left')
        ax.yaxis.tick_left()
    
        for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
            ax.text(j, i, format(cm[i, j], 'd') if cm[i,j] != 0 else '.', horizontalalignment="center", fontsize=6, verticalalignment='center', color= "black")
        fig.set_tight_layout(True)
    
        ImageDirAndName = os.path.join('/Users/tomrink', filename)
        fig.savefig(ImageDirAndName)