util.py 65.24 KiB
import numpy as np
from icing.pirep_goes import setup, time_filter_3
from icing.moon_phase import moon_phase
from util.util import get_time_tuple_utc, is_day, check_oblique, get_median, homedir, \
get_cartopy_crs, \
get_fill_attrs, get_grid_values, GenericException, get_timestamp, get_cf_nav_parameters
from util.plot import make_icing_image
from util.geos_nav import get_navigation, get_lon_lat_2d_mesh
from util.setup import model_path_day, model_path_night
from aeolus.datasource import CLAVRx, CLAVRx_VIIRS, CLAVRx_H08, CLAVRx_H09
import h5py
import datetime
from netCDF4 import Dataset
import joblib
import tensorflow as tf
import os
# from scipy.signal import medfilt2d
flt_level_ranges = {k: None for k in range(5)}
flt_level_ranges[0] = [0.0, 2000.0]
flt_level_ranges[1] = [2000.0, 4000.0]
flt_level_ranges[2] = [4000.0, 6000.0]
flt_level_ranges[3] = [6000.0, 8000.0]
flt_level_ranges[4] = [8000.0, 15000.0]
# Taiwan domain:
# lon, lat = 120.955098, 23.834310
# elem, line = (1789, 1505)
# # UR from Taiwan
# lon, lat = 135.0, 35.0
# elem_ur, line_ur = (2499, 995)
taiwan_i0 = 1079
taiwan_j0 = 995
taiwan_lenx = 1420
taiwan_leny = 1020
# geos.transform_point(135.0, 35.0, ccrs.PlateCarree(), False)
# geos.transform_point(106.61, 13.97, ccrs.PlateCarree(), False)
taiwain_extent = [-3342, -502, 1470, 3510] # GEOS coordinates, not line, elem
def get_training_parameters(day_night='DAY', l1b_andor_l2='both', satellite='GOES16', use_dnb=False):
if day_night == 'DAY':
train_params_l2 = ['cld_height_acha', 'cld_geo_thick', 'cld_temp_acha', 'cld_press_acha', 'supercooled_cloud_fraction',
'cld_emiss_acha', 'conv_cloud_fraction', 'cld_reff_dcomp', 'cld_opd_dcomp', 'iwc_dcomp', 'lwc_dcomp']
# train_params_l2 = ['cld_temp_acha', 'supercooled_cloud_fraction', 'cld_reff_dcomp', 'cld_opd_dcomp', 'iwc_dcomp', 'lwc_dcomp']
if satellite == 'GOES16':
train_params_l1b = ['temp_10_4um_nom', 'temp_11_0um_nom', 'temp_12_0um_nom', 'temp_13_3um_nom', 'temp_3_75um_nom',
'temp_6_2um_nom', 'temp_6_7um_nom', 'temp_7_3um_nom', 'temp_8_5um_nom', 'temp_9_7um_nom',
'refl_0_47um_nom', 'refl_0_65um_nom', 'refl_0_86um_nom', 'refl_1_38um_nom', 'refl_1_60um_nom']
# 'refl_2_10um_nom']
# train_params_l1b = ['refl_1_38um_nom', 'refl_1_60um_nom', 'temp_8_5um_nom', 'temp_11_0um_nom']
elif satellite == 'H08':
train_params_l1b = ['temp_10_4um_nom', 'temp_12_0um_nom', 'temp_8_5um_nom', 'temp_3_75um_nom', 'refl_2_10um_nom',
'refl_1_60um_nom', 'refl_0_86um_nom', 'refl_0_47um_nom']
else:
train_params_l2 = ['cld_height_acha', 'cld_geo_thick', 'cld_temp_acha', 'cld_press_acha', 'supercooled_cloud_fraction',
'cld_emiss_acha', 'conv_cloud_fraction', 'cld_reff_acha', 'cld_opd_acha']
# train_params_l2 = ['cld_temp_acha', 'supercooled_cloud_fraction', 'cld_emiss_acha', 'cld_reff_acha', 'cld_opd_acha']
if use_dnb is True:
train_params_l2 = ['cld_height_acha', 'cld_geo_thick', 'cld_temp_acha', 'cld_press_acha', 'supercooled_cloud_fraction',
'cld_emiss_acha', 'conv_cloud_fraction', 'cld_reff_dcomp', 'cld_opd_dcomp', 'iwc_dcomp', 'lwc_dcomp']
if satellite == 'GOES16':
train_params_l1b = ['temp_10_4um_nom', 'temp_11_0um_nom', 'temp_12_0um_nom', 'temp_13_3um_nom', 'temp_3_75um_nom',
'temp_6_2um_nom', 'temp_6_7um_nom', 'temp_7_3um_nom', 'temp_8_5um_nom', 'temp_9_7um_nom']
# train_params_l1b = ['temp_8_5um_nom', 'temp_11_0um_nom']
elif satellite == 'H08':
train_params_l1b = ['temp_10_4um_nom', 'temp_12_0um_nom', 'temp_8_5um_nom', 'temp_3_75um_nom']
if l1b_andor_l2 == 'both':
train_params = train_params_l1b + train_params_l2
elif l1b_andor_l2 == 'l1b':
train_params = train_params_l1b
elif l1b_andor_l2 == 'l2':
train_params = train_params_l2
return train_params, train_params_l1b, train_params_l2
def make_for_full_domain_predict(h5f, name_list=None, satellite='GOES16', domain='FD', res_fac=1,
data_extent=None):
w_x = 16
w_y = 16
i_0 = 0
j_0 = 0
s_x = int(w_x / res_fac)
s_y = int(w_y / res_fac)
geos, xlen, xmin, xmax, ylen, ymin, ymax = get_cartopy_crs(satellite, domain)
geos_nav = get_navigation(satellite, domain)
if satellite == 'GOES16':
if data_extent is not None:
ll_pt_a = data_extent[0]
ll_pt_b = data_extent[1]
if domain == 'CONUS':
y_a, x_a = geos_nav.earth_to_lc(ll_pt_a.lon, ll_pt_a.lat)
y_b, x_b = geos_nav.earth_to_lc(ll_pt_b.lon, ll_pt_b.lat)
i_0 = x_a if x_a < x_b else x_b
j_0 = y_a if y_a < y_b else y_b
xlen = x_b - x_a if x_a < x_b else x_a - x_b
ylen = y_b - y_a if y_a < y_b else y_a - y_b
if satellite == 'H08':
xlen = taiwan_lenx
ylen = taiwan_leny
i_0 = taiwan_i0
j_0 = taiwan_j0
elif satellite == 'H09':
xlen = taiwan_lenx
ylen = taiwan_leny
i_0 = taiwan_i0
j_0 = taiwan_j0
grd_dct = {name: None for name in name_list}
cnt_a = 0
for ds_name in name_list:
if (satellite == 'H08' or satellite == 'H09') and ds_name == 'temp_6_2um_nom':
gvals = np.full((ylen, xlen), np.nan)
else:
fill_value, fill_value_name = get_fill_attrs(ds_name)
gvals = get_grid_values(h5f, ds_name, j_0, i_0, None, num_j=ylen, num_i=xlen, fill_value_name=fill_value_name, fill_value=fill_value)
if gvals is not None:
grd_dct[ds_name] = gvals
cnt_a += 1
if cnt_a > 0 and cnt_a != len(name_list):
raise GenericException('weirdness')
grd_dct_n = {name: [] for name in name_list}
n_x = int(xlen/s_x) - 1
n_y = int(ylen/s_y) - 1
r_x = xlen - (n_x * s_x)
x_d = 0 if r_x >= w_x else int((w_x - r_x)/s_x)
n_x -= x_d
r_y = ylen - (n_y * s_y)
y_d = 0 if r_y >= w_y else int((w_y - r_y)/s_y)
n_y -= y_d
ll = [j_0 + j*s_y for j in range(n_y)]
cc = [i_0 + i*s_x for i in range(n_x)]
for ds_name in name_list:
for j in range(n_y):
j_ul = j * s_y
j_ul_b = j_ul + w_y
for i in range(n_x):
i_ul = i * s_x
i_ul_b = i_ul + w_x
grd_dct_n[ds_name].append(grd_dct[ds_name][j_ul:j_ul_b, i_ul:i_ul_b])
grd_dct = {name: None for name in name_list}
for ds_name in name_list:
grd_dct[ds_name] = np.stack(grd_dct_n[ds_name])
return grd_dct, ll, cc
def make_for_full_domain_predict_viirs_clavrx(h5f, name_list=None, res_fac=1, day_night='DAY', use_dnb=False):
w_x = 16
w_y = 16
i_0 = 0
j_0 = 0
s_x = int(w_x / res_fac)
s_y = int(w_y / res_fac)
ylen = h5f['scan_lines_along_track_direction'].shape[0]
xlen = h5f['pixel_elements_along_scan_direction'].shape[0]
use_nl_comp = False
if (day_night == 'NIGHT' or day_night == 'AUTO') and use_dnb:
use_nl_comp = True
grd_dct = {name: None for name in name_list}
cnt_a = 0
for ds_name in name_list:
name = ds_name
if use_nl_comp:
if ds_name == 'cld_reff_dcomp':
name = 'cld_reff_nlcomp'
elif ds_name == 'cld_opd_dcomp':
name = 'cld_opd_nlcomp'
fill_value, fill_value_name = get_fill_attrs(name)
gvals = get_grid_values(h5f, name, j_0, i_0, None, num_j=ylen, num_i=xlen, fill_value_name=fill_value_name, fill_value=fill_value)
if gvals is not None:
grd_dct[ds_name] = gvals
cnt_a += 1
if cnt_a > 0 and cnt_a != len(name_list):
raise GenericException('weirdness')
# TODO: need to investigate discrepencies with compute_lwc_iwc
# if use_nl_comp:
# cld_phase = get_grid_values(h5f, 'cloud_phase', j_0, i_0, None, num_j=ylen, num_i=xlen)
# cld_dz = get_grid_values(h5f, 'cld_geo_thick', j_0, i_0, None, num_j=ylen, num_i=xlen)
# reff = grd_dct['cld_reff_dcomp']
# opd = grd_dct['cld_opd_dcomp']
#
# lwc_nlcomp, iwc_nlcomp = compute_lwc_iwc(cld_phase, reff, opd, cld_dz)
# grd_dct['iwc_dcomp'] = iwc_nlcomp
# grd_dct['lwc_dcomp'] = lwc_nlcomp
grd_dct_n = {name: [] for name in name_list}
n_x = int(xlen/s_x) - 1
n_y = int(ylen/s_y) - 1
r_x = xlen - (n_x * s_x)
x_d = 0 if r_x >= w_x else int((w_x - r_x)/s_x)
n_x -= x_d
r_y = ylen - (n_y * s_y)
y_d = 0 if r_y >= w_y else int((w_y - r_y)/s_y)
n_y -= y_d
ll = [j_0 + j*s_y for j in range(n_y)]
cc = [i_0 + i*s_x for i in range(n_x)]
for ds_name in name_list:
for j in range(n_y):
j_ul = j * s_y
j_ul_b = j_ul + w_y
for i in range(n_x):
i_ul = i * s_x
i_ul_b = i_ul + w_x
grd_dct_n[ds_name].append(grd_dct[ds_name][j_ul:j_ul_b, i_ul:i_ul_b])
grd_dct = {name: None for name in name_list}
for ds_name in name_list:
grd_dct[ds_name] = np.stack(grd_dct_n[ds_name])
lats = get_grid_values(h5f, 'latitude', j_0, i_0, None, num_j=ylen, num_i=xlen)
lons = get_grid_values(h5f, 'longitude', j_0, i_0, None, num_j=ylen, num_i=xlen)
ll_2d, cc_2d = np.meshgrid(ll, cc, indexing='ij')
lats = lats[ll_2d, cc_2d]
lons = lons[ll_2d, cc_2d]
return grd_dct, ll, cc, lats, lons
def make_for_full_domain_predict2(h5f, satellite='GOES16', domain='FD', res_fac=1):
w_x = 16
w_y = 16
i_0 = 0
j_0 = 0
s_x = int(w_x / res_fac)
s_y = int(w_y / res_fac)
geos, xlen, xmin, xmax, ylen, ymin, ymax = get_cartopy_crs(satellite, domain)
if satellite == 'H08':
xlen = taiwan_lenx
ylen = taiwan_leny
i_0 = taiwan_i0
j_0 = taiwan_j0
n_x = int(xlen/s_x)
n_y = int(ylen/s_y)
solzen = get_grid_values(h5f, 'solar_zenith_angle', j_0, i_0, None, num_j=ylen, num_i=xlen)
satzen = get_grid_values(h5f, 'sensor_zenith_angle', j_0, i_0, None, num_j=ylen, num_i=xlen)
solzen = solzen[0:(n_y-1)*s_y:s_y, 0:(n_x-1)*s_x:s_x]
satzen = satzen[0:(n_y-1)*s_y:s_y, 0:(n_x-1)*s_x:s_x]
return solzen, satzen
# -------------------------------------------------------------------------------------------
def prepare_evaluate(h5f, name_list, satellite='GOES16', domain='FD', res_fac=1, offset=0):
w_x = 16
w_y = 16
i_0 = 0
j_0 = 0
s_x = w_x // res_fac
s_y = w_y // res_fac
geos, xlen, xmin, xmax, ylen, ymin, ymax = get_cartopy_crs(satellite, domain)
if satellite == 'H08':
xlen = taiwan_lenx
ylen = taiwan_leny
i_0 = taiwan_i0
j_0 = taiwan_j0
elif satellite == 'H09':
xlen = taiwan_lenx
ylen = taiwan_leny
i_0 = taiwan_i0
j_0 = taiwan_j0
n_x = (xlen // s_x)
n_y = (ylen // s_y)
# r_x = xlen - (n_x * s_x)
# x_d = 0 if r_x >= w_x else int((w_x - r_x)/s_x)
# n_x -= x_d
#
# r_y = ylen - (n_y * s_y)
# y_d = 0 if r_y >= w_y else int((w_y - r_y)/s_y)
# n_y -= y_d
ll = [(offset+j_0) + j*s_y for j in range(n_y)]
cc = [(offset+i_0) + i*s_x for i in range(n_x)]
grd_dct_n = {name: [] for name in name_list}
cnt_a = 0
for ds_name in name_list:
fill_value, fill_value_name = get_fill_attrs(ds_name)
gvals = get_grid_values(h5f, ds_name, j_0, i_0, None, num_j=ylen, num_i=xlen, fill_value_name=fill_value_name, fill_value=fill_value)
gvals = np.expand_dims(gvals, axis=0)
if gvals is not None:
grd_dct_n[ds_name] = gvals
cnt_a += 1
if cnt_a > 0 and cnt_a != len(name_list):
raise GenericException('weirdness')
solzen = get_grid_values(h5f, 'solar_zenith_angle', j_0, i_0, None, num_j=ylen, num_i=xlen)
satzen = get_grid_values(h5f, 'sensor_zenith_angle', j_0, i_0, None, num_j=ylen, num_i=xlen)
solzen = solzen[0:n_y*s_y:s_y, 0:n_x*s_x:s_x]
satzen = satzen[0:n_y*s_y:s_y, 0:n_x*s_x:s_x]
return grd_dct_n, solzen, satzen, ll, cc
def prepare_evaluate1x1(h5f, name_list, satellite='GOES16', domain='FD', res_fac=1, offset=0):
w_x = 1
w_y = 1
i_0 = 0
j_0 = 0
s_x = w_x // res_fac
s_y = w_y // res_fac
geos, xlen, xmin, xmax, ylen, ymin, ymax = get_cartopy_crs(satellite, domain)
if satellite == 'H08':
xlen = taiwan_lenx
ylen = taiwan_leny
i_0 = taiwan_i0
j_0 = taiwan_j0
elif satellite == 'H09':
xlen = taiwan_lenx
ylen = taiwan_leny
i_0 = taiwan_i0
j_0 = taiwan_j0
n_x = (xlen // s_x)
n_y = (ylen // s_y)
ll = [(offset+j_0) + j*s_y for j in range(n_y)]
cc = [(offset+i_0) + i*s_x for i in range(n_x)]
grd_s = []
cnt_a = 0
for ds_name in name_list:
fill_value, fill_value_name = get_fill_attrs(ds_name)
gvals = get_grid_values(h5f, ds_name, j_0, i_0, None, num_j=ylen, num_i=xlen, fill_value_name=fill_value_name, fill_value=fill_value)
if gvals is not None:
grd_s.append(gvals.flatten())
cnt_a += 1
if cnt_a > 0 and cnt_a != len(name_list):
raise GenericException('weirdness')
solzen = get_grid_values(h5f, 'solar_zenith_angle', j_0, i_0, None, num_j=ylen, num_i=xlen)
satzen = get_grid_values(h5f, 'sensor_zenith_angle', j_0, i_0, None, num_j=ylen, num_i=xlen)
cldmsk = get_grid_values(h5f, 'cloud_mask', j_0, i_0, None, num_j=ylen, num_i=xlen)
solzen = solzen[0:n_y*s_y:s_y, 0:n_x*s_x:s_x]
satzen = satzen[0:n_y*s_y:s_y, 0:n_x*s_x:s_x]
cldmsk = cldmsk[0:n_y*s_y:s_y, 0:n_x*s_x:s_x]
varX = np.stack(grd_s, axis=1)
return varX, solzen.flatten(), satzen.flatten(), cldmsk.flatten(), ll, cc
flt_level_ranges_str = {k: None for k in range(6)}
flt_level_ranges_str[0] = '0_2000'
flt_level_ranges_str[1] = '2000_4000'
flt_level_ranges_str[2] = '4000_6000'
flt_level_ranges_str[3] = '6000_8000'
flt_level_ranges_str[4] = '8000_15000'
flt_level_ranges_str[-1] = 'CTH_layer'
# flt_level_ranges_str = {k: None for k in range(1)}
# flt_level_ranges_str[0] = 'column'
def write_icing_file(clvrx_str_time, output_dir, preds_dct, probs_dct, x, y, lons, lats, elems, lines):
outfile_name = output_dir + 'icing_prediction_'+clvrx_str_time+'.h5'
h5f_out = h5py.File(outfile_name, 'w')
dim_0_name = 'x'
dim_1_name = 'y'
prob_s = []
pred_s = []
flt_lvls = list(preds_dct.keys())
for flvl in flt_lvls:
preds = preds_dct[flvl]
pred_s.append(preds)
icing_pred_ds = h5f_out.create_dataset('icing_prediction_level_'+flt_level_ranges_str[flvl], data=preds, dtype='i2')
icing_pred_ds.attrs.create('coordinates', data='y x')
icing_pred_ds.attrs.create('grid_mapping', data='Projection')
icing_pred_ds.attrs.create('missing', data=-1)
icing_pred_ds.dims[0].label = dim_0_name
icing_pred_ds.dims[1].label = dim_1_name
for flvl in flt_lvls:
probs = probs_dct[flvl]
prob_s.append(probs)
icing_prob_ds = h5f_out.create_dataset('icing_probability_level_'+flt_level_ranges_str[flvl], data=probs, dtype='f4')
icing_prob_ds.attrs.create('coordinates', data='y x')
icing_prob_ds.attrs.create('grid_mapping', data='Projection')
icing_prob_ds.attrs.create('missing', data=-1.0)
icing_prob_ds.dims[0].label = dim_0_name
icing_prob_ds.dims[1].label = dim_1_name
prob_s = np.stack(prob_s, axis=-1)
max_prob = np.max(prob_s, axis=2)
icing_prob_ds = h5f_out.create_dataset('max_icing_probability_column', data=max_prob, dtype='f4')
icing_prob_ds.attrs.create('coordinates', data='y x')
icing_prob_ds.attrs.create('grid_mapping', data='Projection')
icing_prob_ds.attrs.create('missing', data=-1.0)
icing_prob_ds.dims[0].label = dim_0_name
icing_prob_ds.dims[1].label = dim_1_name
max_lvl = np.argmax(prob_s, axis=2)
icing_pred_ds = h5f_out.create_dataset('max_icing_probability_level', data=max_lvl, dtype='i2')
icing_pred_ds.attrs.create('coordinates', data='y x')
icing_pred_ds.attrs.create('grid_mapping', data='Projection')
icing_pred_ds.attrs.create('missing', data=-1)
icing_pred_ds.dims[0].label = dim_0_name
icing_pred_ds.dims[1].label = dim_1_name
lon_ds = h5f_out.create_dataset('longitude', data=lons, dtype='f4')
lon_ds.attrs.create('units', data='degrees_east')
lon_ds.attrs.create('long_name', data='icing prediction longitude')
lon_ds.dims[0].label = dim_0_name
lon_ds.dims[1].label = dim_1_name
lat_ds = h5f_out.create_dataset('latitude', data=lats, dtype='f4')
lat_ds.attrs.create('units', data='degrees_north')
lat_ds.attrs.create('long_name', data='icing prediction latitude')
lat_ds.dims[0].label = dim_0_name
lat_ds.dims[1].label = dim_1_name
proj_ds = h5f_out.create_dataset('Projection', data=0, dtype='b')
proj_ds.attrs.create('long_name', data='Himawari Imagery Projection')
proj_ds.attrs.create('grid_mapping_name', data='geostationary')
proj_ds.attrs.create('sweep_angle_axis', data='y')
proj_ds.attrs.create('units', data='rad')
proj_ds.attrs.create('semi_major_axis', data=6378.137)
proj_ds.attrs.create('semi_minor_axis', data=6356.7523)
proj_ds.attrs.create('inverse_flattening', data=298.257)
proj_ds.attrs.create('perspective_point_height', data=35785.863)
proj_ds.attrs.create('latitude_of_projection_origin', data=0.0)
proj_ds.attrs.create('longitude_of_projection_origin', data=140.7)
proj_ds.attrs.create('CFAC', data=20466275)
proj_ds.attrs.create('LFAC', data=20466275)
proj_ds.attrs.create('COFF', data=2750.5)
proj_ds.attrs.create('LOFF', data=2750.5)
if x is not None:
x_ds = h5f_out.create_dataset('x', data=x, dtype='f8')
x_ds.dims[0].label = dim_0_name
x_ds.attrs.create('units', data='rad')
x_ds.attrs.create('standard_name', data='projection_x_coordinate')
x_ds.attrs.create('long_name', data='GOES PUG W-E fixed grid viewing angle')
x_ds.attrs.create('scale_factor', data=5.58879902955962e-05)
x_ds.attrs.create('add_offset', data=-0.153719917308037)
x_ds.attrs.create('CFAC', data=20466275)
x_ds.attrs.create('COFF', data=2750.5)
y_ds = h5f_out.create_dataset('y', data=y, dtype='f8')
y_ds.dims[0].label = dim_1_name
y_ds.attrs.create('units', data='rad')
y_ds.attrs.create('standard_name', data='projection_y_coordinate')
y_ds.attrs.create('long_name', data='GOES PUG S-N fixed grid viewing angle')
y_ds.attrs.create('scale_factor', data=-5.58879902955962e-05)
y_ds.attrs.create('add_offset', data=0.153719917308037)
y_ds.attrs.create('LFAC', data=20466275)
y_ds.attrs.create('LOFF', data=2750.5)
if elems is not None:
elem_ds = h5f_out.create_dataset('elems', data=elems, dtype='i2')
elem_ds.dims[0].label = dim_0_name
line_ds = h5f_out.create_dataset('lines', data=lines, dtype='i2')
line_ds.dims[0].label = dim_1_name
pass
h5f_out.close()
def write_icing_file_nc4(clvrx_str_time, output_dir, preds_dct, probs_dct,
x, y, lons, lats, elems, lines, satellite='GOES16', domain='CONUS',
has_time=False, use_nan=False, prob_thresh=0.5, bt_10_4=None, cld_top_hgt_max=None):
outfile_name = output_dir + 'icing_prediction_'+clvrx_str_time+'.nc'
rootgrp = Dataset(outfile_name, 'w', format='NETCDF4')
rootgrp.setncattr('Conventions', 'CF-1.7')
dim_0_name = 'x'
dim_1_name = 'y'
time_dim_name = 'time'
geo_coords = 'time y x'
dim_0 = rootgrp.createDimension(dim_0_name, size=x.shape[0])
dim_1 = rootgrp.createDimension(dim_1_name, size=y.shape[0])
dim_time = rootgrp.createDimension(time_dim_name, size=1)
tvar = rootgrp.createVariable('time', 'f8', time_dim_name)
tvar[0] = get_timestamp(clvrx_str_time)
tvar.units = 'seconds since 1970-01-01 00:00:00'
if not has_time:
var_dim_list = [dim_1_name, dim_0_name]
else:
var_dim_list = [time_dim_name, dim_1_name, dim_0_name]
prob_s = []
flt_lvls = list(preds_dct.keys())
for flvl in flt_lvls:
preds = preds_dct[flvl]
icing_pred_ds = rootgrp.createVariable('icing_prediction_level_'+flt_level_ranges_str[flvl], 'i2', var_dim_list)
icing_pred_ds.setncattr('coordinates', geo_coords)
icing_pred_ds.setncattr('grid_mapping', 'Projection')
icing_pred_ds.setncattr('missing', -1)
if has_time:
preds = preds.reshape((1, y.shape[0], x.shape[0]))
icing_pred_ds[:,] = preds
for flvl in flt_lvls:
probs = probs_dct[flvl]
prob_s.append(probs)
icing_prob_ds = rootgrp.createVariable('icing_probability_level_'+flt_level_ranges_str[flvl], 'f4', var_dim_list)
icing_prob_ds.setncattr('coordinates', geo_coords)
icing_prob_ds.setncattr('grid_mapping', 'Projection')
if not use_nan:
icing_prob_ds.setncattr('missing', -1.0)
else:
icing_prob_ds.setncattr('missing', np.nan)
if has_time:
probs = probs.reshape((1, y.shape[0], x.shape[0]))
if use_nan:
probs = np.where(probs < prob_thresh, np.nan, probs)
icing_prob_ds[:,] = probs
prob_s = np.stack(prob_s, axis=-1)
max_prob = np.max(prob_s, axis=2)
if use_nan:
max_prob = np.where(max_prob < prob_thresh, np.nan, max_prob)
if has_time:
max_prob = max_prob.reshape(1, y.shape[0], x.shape[0])
icing_prob_ds = rootgrp.createVariable('max_icing_probability_column', 'f4', var_dim_list)
icing_prob_ds.setncattr('coordinates', geo_coords)
icing_prob_ds.setncattr('grid_mapping', 'Projection')
if not use_nan:
icing_prob_ds.setncattr('missing', -1.0)
else:
icing_prob_ds.setncattr('missing', np.nan)
icing_prob_ds[:,] = max_prob
prob_s = np.where(prob_s < prob_thresh, -1.0, prob_s)
max_lvl = np.where(np.all(prob_s == -1, axis=2), -1, np.argmax(prob_s, axis=2))
if use_nan:
max_lvl = np.where(max_lvl == -1, np.nan, max_lvl)
if has_time:
max_lvl = max_lvl.reshape((1, y.shape[0], x.shape[0]))
icing_pred_ds = rootgrp.createVariable('max_icing_probability_level', 'i2', var_dim_list)
icing_pred_ds.setncattr('coordinates', geo_coords)
icing_pred_ds.setncattr('grid_mapping', 'Projection')
icing_pred_ds.setncattr('missing', -1)
icing_pred_ds[:,] = max_lvl
if bt_10_4 is not None:
bt_ds = rootgrp.createVariable('bt_10_4', 'f4', var_dim_list)
bt_ds.setncattr('coordinates', geo_coords)
bt_ds.setncattr('grid_mapping', 'Projection')
bt_ds[:,] = bt_10_4
if cld_top_hgt_max is not None:
cth_ds = rootgrp.createVariable('cld_top_hgt_max', 'f4', var_dim_list)
cth_ds.setncattr('coordinates', geo_coords)
cth_ds.setncattr('grid_mapping', 'Projection')
cth_ds.units = 'meter'
cth_ds[:,] = cld_top_hgt_max
lon_ds = rootgrp.createVariable('longitude', 'f4', [dim_1_name, dim_0_name])
lon_ds.units = 'degrees_east'
lon_ds[:,] = lons
lat_ds = rootgrp.createVariable('latitude', 'f4', [dim_1_name, dim_0_name])
lat_ds.units = 'degrees_north'
lat_ds[:,] = lats
cf_nav_dct = get_cf_nav_parameters(satellite, domain)
if satellite == 'H08':
long_name = 'Himawari Imagery Projection'
elif satellite == 'H09':
long_name = 'Himawari Imagery Projection'
elif satellite == 'GOES16':
long_name = 'GOES-16/17 Imagery Projection'
proj_ds = rootgrp.createVariable('Projection', 'b')
proj_ds.setncattr('long_name', long_name)
proj_ds.setncattr('grid_mapping_name', 'geostationary')
proj_ds.setncattr('sweep_angle_axis', cf_nav_dct['sweep_angle_axis'])
proj_ds.setncattr('semi_major_axis', cf_nav_dct['semi_major_axis'])
proj_ds.setncattr('semi_minor_axis', cf_nav_dct['semi_minor_axis'])
proj_ds.setncattr('inverse_flattening', cf_nav_dct['inverse_flattening'])
proj_ds.setncattr('perspective_point_height', cf_nav_dct['perspective_point_height'])
proj_ds.setncattr('latitude_of_projection_origin', cf_nav_dct['latitude_of_projection_origin'])
proj_ds.setncattr('longitude_of_projection_origin', cf_nav_dct['longitude_of_projection_origin'])
if x is not None:
x_ds = rootgrp.createVariable(dim_0_name, 'f8', [dim_0_name])
x_ds.units = 'rad'
x_ds.setncattr('axis', 'X')
x_ds.setncattr('standard_name', 'projection_x_coordinate')
x_ds.setncattr('long_name', 'fixed grid viewing angle')
x_ds.setncattr('scale_factor', cf_nav_dct['x_scale_factor'])
x_ds.setncattr('add_offset', cf_nav_dct['x_add_offset'])
x_ds[:] = x
y_ds = rootgrp.createVariable(dim_1_name, 'f8', [dim_1_name])
y_ds.units = 'rad'
y_ds.setncattr('axis', 'Y')
y_ds.setncattr('standard_name', 'projection_y_coordinate')
y_ds.setncattr('long_name', 'fixed grid viewing angle')
y_ds.setncattr('scale_factor', cf_nav_dct['y_scale_factor'])
y_ds.setncattr('add_offset', cf_nav_dct['y_add_offset'])
y_ds[:] = y
if elems is not None:
elem_ds = rootgrp.createVariable('elems', 'i2', [dim_0_name])
elem_ds[:] = elems
line_ds = rootgrp.createVariable('lines', 'i2', [dim_1_name])
line_ds[:] = lines
pass
rootgrp.close()
def write_icing_file_nc4_viirs(clvrx_str_time, output_dir, preds_dct, probs_dct, lons, lats,
has_time=False, use_nan=False, prob_thresh=0.5, bt_10_4=None):
outfile_name = output_dir + 'icing_prediction_'+clvrx_str_time+'.nc'
rootgrp = Dataset(outfile_name, 'w', format='NETCDF4')
rootgrp.setncattr('Conventions', 'CF-1.7')
dim_0_name = 'x'
dim_1_name = 'y'
time_dim_name = 'time'
geo_coords = 'longitude latitude'
dim_1_len, dim_0_len = lons.shape
dim_0 = rootgrp.createDimension(dim_0_name, size=dim_0_len)
dim_1 = rootgrp.createDimension(dim_1_name, size=dim_1_len)
dim_time = rootgrp.createDimension(time_dim_name, size=1)
tvar = rootgrp.createVariable('time', 'f8', time_dim_name)
tvar[0] = get_timestamp(clvrx_str_time)
tvar.units = 'seconds since 1970-01-01 00:00:00'
if not has_time:
var_dim_list = [dim_1_name, dim_0_name]
else:
var_dim_list = [time_dim_name, dim_1_name, dim_0_name]
prob_s = []
flt_lvls = list(preds_dct.keys())
for flvl in flt_lvls:
preds = preds_dct[flvl]
icing_pred_ds = rootgrp.createVariable('icing_prediction_level_'+flt_level_ranges_str[flvl], 'i2', var_dim_list)
icing_pred_ds.setncattr('coordinates', geo_coords)
icing_pred_ds.setncattr('grid_mapping', 'Projection')
icing_pred_ds.setncattr('missing', -1)
if has_time:
preds = preds.reshape((1, dim_1_len, dim_0_len))
icing_pred_ds[:,] = preds
for flvl in flt_lvls:
probs = probs_dct[flvl]
prob_s.append(probs)
icing_prob_ds = rootgrp.createVariable('icing_probability_level_'+flt_level_ranges_str[flvl], 'f4', var_dim_list)
icing_prob_ds.setncattr('coordinates', geo_coords)
icing_prob_ds.setncattr('grid_mapping', 'Projection')
if not use_nan:
icing_prob_ds.setncattr('missing', -1.0)
else:
icing_prob_ds.setncattr('missing', np.nan)
if has_time:
probs = probs.reshape((1, dim_1_len, dim_0_len))
if use_nan:
probs = np.where(probs < prob_thresh, np.nan, probs)
icing_prob_ds[:,] = probs
prob_s = np.stack(prob_s, axis=-1)
max_prob = np.max(prob_s, axis=2)
if use_nan:
max_prob = np.where(max_prob < prob_thresh, np.nan, max_prob)
if has_time:
max_prob = max_prob.reshape(1, dim_1_len, dim_0_len)
icing_prob_ds = rootgrp.createVariable('max_icing_probability_column', 'f4', var_dim_list)
icing_prob_ds.setncattr('coordinates', geo_coords)
icing_prob_ds.setncattr('grid_mapping', 'Projection')
if not use_nan:
icing_prob_ds.setncattr('missing', -1.0)
else:
icing_prob_ds.setncattr('missing', np.nan)
icing_prob_ds[:,] = max_prob
prob_s = np.where(prob_s < prob_thresh, -1.0, prob_s)
max_lvl = np.where(np.all(prob_s == -1, axis=2), -1, np.argmax(prob_s, axis=2))
if use_nan:
max_lvl = np.where(max_lvl == -1, np.nan, max_lvl)
if has_time:
max_lvl = max_lvl.reshape((1, dim_1_len, dim_0_len))
icing_pred_ds = rootgrp.createVariable('max_icing_probability_level', 'i2', var_dim_list)
icing_pred_ds.setncattr('coordinates', geo_coords)
icing_pred_ds.setncattr('grid_mapping', 'Projection')
icing_pred_ds.setncattr('missing', -1)
icing_pred_ds[:,] = max_lvl
if bt_10_4 is not None:
bt_ds = rootgrp.createVariable('bt_10_4', 'f4', var_dim_list)
bt_ds.setncattr('coordinates', geo_coords)
bt_ds.setncattr('grid_mapping', 'Projection')
bt_ds[:,] = bt_10_4
lon_ds = rootgrp.createVariable('longitude', 'f4', [dim_1_name, dim_0_name])
lon_ds.units = 'degrees_east'
lon_ds[:,] = lons
lat_ds = rootgrp.createVariable('latitude', 'f4', [dim_1_name, dim_0_name])
lat_ds.units = 'degrees_north'
lat_ds[:,] = lats
proj_ds = rootgrp.createVariable('Projection', 'b')
proj_ds.setncattr('grid_mapping_name', 'latitude_longitude')
rootgrp.close()
def run_icing_predict(clvrx_dir='/Users/tomrink/data/clavrx/RadC/', output_dir=homedir,
day_model_path=model_path_day, night_model_path=model_path_night,
prob_thresh=0.5, satellite='GOES16', domain='CONUS', day_night='AUTO',
l1b_andor_l2='both', use_flight_altitude=True, res_fac=1, use_nan=False,
has_time=False, model_type='FCN', use_dnb=False, use_max_cth_level=False):
if model_type == 'CNN':
import deeplearning.icing_cnn as icing_cnn
model_module = icing_cnn
elif model_type == 'FCN':
import deeplearning.icing_fcn as icing_fcn
model_module = icing_fcn
if day_model_path is not None:
day_model = model_module.load_model(day_model_path, day_night='DAY', l1b_andor_l2=l1b_andor_l2,
use_flight_altitude=use_flight_altitude)
if night_model_path is not None:
night_model = model_module.load_model(night_model_path, day_night='NIGHT', l1b_andor_l2=l1b_andor_l2,
use_flight_altitude=use_flight_altitude)
flight_levels = [0]
if use_flight_altitude is True:
flight_levels = [0, 1, 2, 3, 4]
if use_max_cth_level:
flight_levels = [-1]
day_train_params, _, _ = get_training_parameters(day_night='DAY', l1b_andor_l2=l1b_andor_l2)
nght_train_params, _, _ = get_training_parameters(day_night='NIGHT', l1b_andor_l2=l1b_andor_l2, use_dnb=False)
nght_train_params_dnb, _, _ = get_training_parameters(day_night='NIGHT', l1b_andor_l2=l1b_andor_l2, use_dnb=True)
if day_night == 'AUTO':
train_params = list(set(day_train_params + nght_train_params))
train_params_dnb = list(set(day_train_params + nght_train_params_dnb))
elif day_night == 'DAY':
train_params = day_train_params
elif day_night == 'NIGHT':
train_params = nght_train_params
train_params_dnb = nght_train_params_dnb
if satellite == 'H08':
clvrx_ds = CLAVRx_H08(clvrx_dir)
elif satellite == 'H09':
clvrx_ds = CLAVRx_H09(clvrx_dir)
elif satellite == 'GOES16':
clvrx_ds = CLAVRx(clvrx_dir)
elif satellite == 'VIIRS':
clvrx_ds = CLAVRx_VIIRS(clvrx_dir)
clvrx_files = clvrx_ds.flist
for fidx, fname in enumerate(clvrx_files):
h5f = h5py.File(fname, 'r')
dto = clvrx_ds.get_datetime(fname)
ts = dto.timestamp()
lunar_illuminated = moon_phase(ts)
clvrx_str_time = dto.strftime('%Y-%m-%d_%H:%M')
if satellite == 'GOES16' or satellite == 'H08' or satellite == 'H09':
data_dct, ll, cc = make_for_full_domain_predict(h5f, name_list=train_params, satellite=satellite, domain=domain, res_fac=res_fac)
if fidx == 0: # These don't change for geostationary fixed grids
nav = get_navigation(satellite, domain)
lons_2d, lats_2d, x_rad, y_rad = get_lon_lat_2d_mesh(nav, ll, cc, offset=int(8 / res_fac))
bt_fld_name = 'temp_10_4um_nom'
ancil_data_dct, _, _ = make_for_full_domain_predict(h5f, name_list=
['solar_zenith_angle', 'sensor_zenith_angle', 'cld_height_acha', 'cld_geo_thick', bt_fld_name],
satellite=satellite, domain=domain, res_fac=res_fac)
elif satellite == 'VIIRS':
if use_dnb and lunar_illuminated:
train_params = train_params_dnb
data_dct, ll, cc, lats_2d, lons_2d = make_for_full_domain_predict_viirs_clavrx(h5f, name_list=train_params,
day_night=day_night, res_fac=res_fac, use_dnb=use_dnb)
bt_fld_name = 'temp_11_0um_nom'
ancil_data_dct, _, _, _, _ = make_for_full_domain_predict_viirs_clavrx(h5f, name_list=
['solar_zenith_angle', 'sensor_zenith_angle', 'cld_height_acha', 'cld_geo_thick', bt_fld_name],
res_fac=res_fac)
num_elems, num_lines = len(cc), len(ll)
satzen = ancil_data_dct['sensor_zenith_angle']
solzen = ancil_data_dct['solar_zenith_angle']
cth = ancil_data_dct['cld_height_acha']
bt_10_4 = ancil_data_dct[bt_fld_name]
day_idxs = []
nght_idxs = []
all_idxs = []
avg_bt = []
day_cth_max = []
nght_cth_max = []
cth_max = []
cth_avg = []
for j in range(num_lines):
for i in range(num_elems):
k = i + j*num_elems
avg_bt.append(get_median(bt_10_4[k]))
c = cth[k].flatten()
c_m = np.mean(np.sort(c[np.invert(np.isnan(c))])[-2:])
cth_max.append(c_m)
cth_avg.append(np.mean(c[np.invert(np.isnan(c))]))
c_m = 0 if 2000 > c_m >= 0 else c_m
c_m = 1 if 4000 > c_m >= 2000 else c_m
c_m = 2 if 6000 > c_m >= 4000 else c_m
c_m = 3 if 8000 > c_m >= 6000 else c_m
c_m = 4 if 15000 > c_m >= 8000 else c_m
if not check_oblique(satzen[k]):
continue
all_idxs.append(k)
if is_day(solzen[k]):
day_idxs.append(k)
day_cth_max.append(c_m)
else:
nght_idxs.append(k)
nght_cth_max.append(c_m)
num_tiles = len(all_idxs)
num_day_tiles = len(day_idxs)
num_nght_tiles = len(nght_idxs)
day_cth_max = np.array(day_cth_max)
nght_cth_max = np.array(nght_cth_max)
# initialize output arrays
probs_2d_dct = {flvl: None for flvl in flight_levels}
preds_2d_dct = {flvl: None for flvl in flight_levels}
for flvl in flight_levels:
fd_preds = np.zeros(num_lines * num_elems, dtype=np.int8)
fd_preds[:] = -1
fd_probs = np.zeros(num_lines * num_elems, dtype=np.float32)
fd_probs[:] = -1.0
preds_2d_dct[flvl] = fd_preds
probs_2d_dct[flvl] = fd_probs
if day_night == 'AUTO' or day_night == 'DAY':
if num_day_tiles > 0:
day_idxs = np.array(day_idxs)
day_grd_dct = {name: None for name in day_train_params}
for name in day_train_params:
day_grd_dct[name] = data_dct[name][day_idxs, ]
if use_max_cth_level:
day_grd_dct['cth_high_avg'] = day_cth_max
preds_day_dct, probs_day_dct = \
model_module.run_evaluate_static_2(day_model, day_grd_dct, num_day_tiles,
prob_thresh=prob_thresh,
flight_levels=flight_levels)
for flvl in flight_levels:
day_preds = preds_day_dct[flvl]
day_probs = probs_day_dct[flvl]
fd_preds = preds_2d_dct[flvl]
fd_probs = probs_2d_dct[flvl]
fd_preds[day_idxs] = day_preds[:]
fd_probs[day_idxs] = day_probs[:]
if num_nght_tiles > 0:
mode = 'NIGHT'
model_path = night_model_path
if use_dnb and lunar_illuminated:
model_path = day_model_path
mode = 'DAY'
nght_train_params = train_params_dnb
nght_idxs = np.array(nght_idxs)
nght_grd_dct = {name: None for name in nght_train_params}
for name in nght_train_params:
nght_grd_dct[name] = data_dct[name][nght_idxs, ]
if use_max_cth_level:
nght_grd_dct['cth_high_avg'] = nght_cth_max
preds_nght_dct, probs_nght_dct = \
model_module.run_evaluate_static_2(night_model, nght_grd_dct, num_nght_tiles,
prob_thresh=prob_thresh,
flight_levels=flight_levels)
for flvl in flight_levels:
nght_preds = preds_nght_dct[flvl]
nght_probs = probs_nght_dct[flvl]
fd_preds = preds_2d_dct[flvl]
fd_probs = probs_2d_dct[flvl]
fd_preds[nght_idxs] = nght_preds[:]
fd_probs[nght_idxs] = nght_probs[:]
elif day_night == 'NIGHT':
model_path = night_model_path
mode = 'NIGHT'
if use_dnb and lunar_illuminated:
model_path = day_model_path
mode = 'DAY'
nght_train_params = train_params_dnb
all_idxs = np.array(all_idxs)
nght_grd_dct = {name: None for name in nght_train_params}
for name in nght_train_params:
nght_grd_dct[name] = data_dct[name][all_idxs,]
if use_max_cth_level:
nght_grd_dct['cth_high_avg'] = nght_cth_max
preds_nght_dct, probs_nght_dct = \
model_module.run_evaluate_static_2(night_model, nght_grd_dct, num_nght_tiles,
prob_thresh=prob_thresh,
flight_levels=flight_levels)
for flvl in flight_levels:
nght_preds = preds_nght_dct[flvl]
nght_probs = probs_nght_dct[flvl]
fd_preds = preds_2d_dct[flvl]
fd_probs = probs_2d_dct[flvl]
fd_preds[all_idxs] = nght_preds[:]
fd_probs[all_idxs] = nght_probs[:]
# combine day and night into full grid ------------------------------------------
for flvl in flight_levels:
fd_preds = preds_2d_dct[flvl]
fd_probs = probs_2d_dct[flvl]
preds_2d_dct[flvl] = fd_preds.reshape((num_lines, num_elems))
probs_2d_dct[flvl] = fd_probs.reshape((num_lines, num_elems))
avg_bt = np.array(avg_bt)
bt_10_4_2d = avg_bt.reshape((num_lines, num_elems))
cth_max = np.array(cth_max)
cth_max = cth_max.reshape((num_lines, num_elems))
cth_avg = np.array(cth_avg)
cth_avg = cth_avg.reshape((num_lines, num_elems))
if satellite == 'GOES16' or satellite == 'H08' or satellite == 'H09':
write_icing_file_nc4(clvrx_str_time, output_dir, preds_2d_dct, probs_2d_dct,
x_rad, y_rad, lons_2d, lats_2d, cc, ll,
satellite=satellite, domain=domain, use_nan=use_nan, has_time=has_time,
prob_thresh=prob_thresh, bt_10_4=bt_10_4_2d, cld_top_hgt_max=cth_avg)
elif satellite == 'VIIRS':
write_icing_file_nc4_viirs(clvrx_str_time, output_dir, preds_2d_dct, probs_2d_dct,
lons_2d, lats_2d,
use_nan=use_nan, has_time=has_time,
prob_thresh=prob_thresh, bt_10_4=bt_10_4_2d)
print('Done: ', clvrx_str_time)
h5f.close()
def run_icing_predict_fcn(clvrx_dir='/Users/tomrink/data/clavrx/RadC/', output_dir=homedir,
day_model_path=model_path_day, night_model_path=model_path_night,
prob_thresh=0.5, satellite='GOES16', domain='CONUS', day_night='AUTO',
l1b_andor_l2='both', use_flight_altitude=False, use_max_cth_level=False, use_nan=False):
import deeplearning.icing_fcn as icing_fcn
model_module = icing_fcn
if day_model_path is not None:
day_model = model_module.load_model(day_model_path, day_night='DAY', l1b_andor_l2=l1b_andor_l2,
use_flight_altitude=use_flight_altitude)
if night_model_path is not None:
night_model = model_module.load_model(night_model_path, day_night='NIGHT', l1b_andor_l2=l1b_andor_l2,
use_flight_altitude=use_flight_altitude)
if use_flight_altitude is True:
flight_levels = [0, 1, 2, 3, 4]
if use_max_cth_level:
flight_levels = [-1]
else:
flight_levels = [0]
day_train_params, _, _ = get_training_parameters(day_night='DAY', l1b_andor_l2=l1b_andor_l2)
nght_train_params, _, _ = get_training_parameters(day_night='NIGHT', l1b_andor_l2=l1b_andor_l2)
if day_night == 'AUTO':
train_params = list(set(day_train_params + nght_train_params))
elif day_night == 'DAY':
train_params = day_train_params
elif day_night == 'NIGHT':
train_params = nght_train_params
if satellite == 'H08':
clvrx_ds = CLAVRx_H08(clvrx_dir)
elif satellite == 'H09':
clvrx_ds = CLAVRx_H09(clvrx_dir)
else:
clvrx_ds = CLAVRx(clvrx_dir)
clvrx_files = clvrx_ds.flist
for fidx, fname in enumerate(clvrx_files):
h5f = h5py.File(fname, 'r')
dto = clvrx_ds.get_datetime(fname)
clvrx_str_time = dto.strftime('%Y-%m-%d_%H:%M')
data_dct, solzen, satzen, ll, cc = prepare_evaluate(h5f, name_list=train_params, satellite=satellite, domain=domain, offset=8)
num_elems = len(cc)
num_lines = len(ll)
if fidx == 0:
nav = get_navigation(satellite, domain)
lons_2d, lats_2d, x_rad, y_rad = get_lon_lat_2d_mesh(nav, ll, cc)
day_idxs = solzen < 80.0
day_idxs = day_idxs.flatten()
num_day_tiles = np.sum(day_idxs)
nght_idxs = solzen > 100.0
nght_idxs = nght_idxs.flatten()
num_nght_tiles = np.sum(nght_idxs)
# initialize output arrays
probs_2d_dct = {flvl: None for flvl in flight_levels}
preds_2d_dct = {flvl: None for flvl in flight_levels}
for flvl in flight_levels:
fd_preds = np.zeros(num_lines * num_elems, dtype=np.int8)
fd_preds[:] = -1
fd_probs = np.zeros(num_lines * num_elems, dtype=np.float32)
fd_probs[:] = -1.0
preds_2d_dct[flvl] = fd_preds
probs_2d_dct[flvl] = fd_probs
if (day_night == 'AUTO' or day_night == 'DAY') and num_day_tiles > 0:
preds_day_dct, probs_day_dct = icing_fcn.run_evaluate_static_2(day_model, data_dct, 1,
prob_thresh=prob_thresh,
flight_levels=flight_levels)
for flvl in flight_levels:
preds = (preds_day_dct[flvl]).flatten()
probs = (probs_day_dct[flvl]).flatten()
fd_preds = preds_2d_dct[flvl]
fd_probs = probs_2d_dct[flvl]
fd_preds[day_idxs] = preds[day_idxs]
fd_probs[day_idxs] = probs[day_idxs]
if (day_night == 'AUTO' or day_night == 'NIGHT') and num_nght_tiles > 0:
preds_nght_dct, probs_nght_dct = icing_fcn.run_evaluate_static_2(night_model, data_dct, 1,
prob_thresh=prob_thresh,
flight_levels=flight_levels)
for flvl in flight_levels:
preds = (preds_nght_dct[flvl]).flatten()
probs = (probs_nght_dct[flvl]).flatten()
fd_preds = preds_2d_dct[flvl]
fd_probs = probs_2d_dct[flvl]
fd_preds[nght_idxs] = preds[nght_idxs]
fd_probs[nght_idxs] = probs[nght_idxs]
for flvl in flight_levels:
fd_preds = preds_2d_dct[flvl]
fd_probs = probs_2d_dct[flvl]
preds_2d_dct[flvl] = fd_preds.reshape((num_lines, num_elems))
probs_2d_dct[flvl] = fd_probs.reshape((num_lines, num_elems))
write_icing_file_nc4(clvrx_str_time, output_dir, preds_2d_dct, probs_2d_dct,
x_rad, y_rad, lons_2d, lats_2d, cc, ll,
satellite=satellite, domain=domain, use_nan=use_nan, prob_thresh=prob_thresh)
print('Done: ', clvrx_str_time)
h5f.close()
def run_icing_predict_image(clvrx_dir='/Users/tomrink/data/clavrx/RadC/', output_dir=homedir,
day_model_path=model_path_day, night_model_path=model_path_night,
prob_thresh=0.5, satellite='GOES16', domain='CONUS', day_night='AUTO',
l1b_andor_l2='BOTH', use_flight_altitude=True, flight_levels=[0, 1, 2, 3, 4],
res_fac=1, model_type='CNN', extent=[-105, -70, 15, 50], pirep_file=None, icing_dict=None,
data_extent=None, use_max_cth_level=False,
obs_lons=None, obs_lats=None, obs_times=None, obs_alt=None, obs_intensity=None,
icing_intensity_plot_min=1):
if model_type == 'CNN':
import deeplearning.icing_cnn as icing_cnn
model_module = icing_cnn
elif model_type == 'FCN':
import deeplearning.icing_fcn as icing_fcn
model_module = icing_fcn
if day_model_path is not None:
day_model = model_module.load_model(day_model_path, day_night='DAY', l1b_andor_l2=l1b_andor_l2,
use_flight_altitude=use_flight_altitude)
if night_model_path is not None:
night_model = model_module.load_model(night_model_path, day_night='NIGHT', l1b_andor_l2=l1b_andor_l2,
use_flight_altitude=use_flight_altitude)
alt_lo, alt_hi = 0.0, 15000.0
if use_flight_altitude is True:
flight_levels = flight_levels
alt_lo = flt_level_ranges[flight_levels[0]][0]
alt_hi = flt_level_ranges[flight_levels[-1]][1]
else:
flight_levels = [0]
if use_max_cth_level:
flight_levels = [-1]
if pirep_file is not None:
ice_dict, no_ice_dict, neg_ice_dict = setup(pirep_file)
if icing_dict is not None:
ice_dict = icing_dict
day_train_params, _, _ = get_training_parameters(day_night='DAY', l1b_andor_l2=l1b_andor_l2)
nght_train_params, _, _ = get_training_parameters(day_night='NIGHT', l1b_andor_l2=l1b_andor_l2)
if day_night == 'AUTO':
train_params = list(set(day_train_params + nght_train_params))
elif day_night == 'DAY':
train_params = day_train_params
elif day_night == 'NIGHT':
train_params = nght_train_params
if satellite == 'H08':
clvrx_ds = CLAVRx_H08(clvrx_dir)
elif satellite == 'H09':
clvrx_ds = CLAVRx_H09(clvrx_dir)
else:
clvrx_ds = CLAVRx(clvrx_dir)
clvrx_files = clvrx_ds.flist
for fidx, fname in enumerate(clvrx_files):
h5f = h5py.File(fname, 'r')
dto = clvrx_ds.get_datetime(fname)
ts = dto.timestamp()
clvrx_str_time = dto.strftime('%Y-%m-%d_%H:%M')
data_dct, ll, cc = make_for_full_domain_predict(h5f, name_list=train_params, satellite=satellite, domain=domain,
res_fac=res_fac, data_extent=data_extent)
if fidx == 0:
num_elems = len(cc)
num_lines = len(ll)
nav = get_navigation(satellite, domain)
ancil_data_dct, _, _ = make_for_full_domain_predict(h5f, name_list=
['solar_zenith_angle', 'sensor_zenith_angle', 'cld_height_acha', 'cld_geo_thick'],
satellite=satellite, domain=domain, res_fac=res_fac,
data_extent=data_extent)
satzen = ancil_data_dct['sensor_zenith_angle']
solzen = ancil_data_dct['solar_zenith_angle']
cth = ancil_data_dct['cld_height_acha']
day_idxs = []
nght_idxs = []
day_cth_max = []
nght_cth_max = []
for j in range(num_lines):
for i in range(num_elems):
k = i + j*num_elems
c = cth[k].flatten()
c_m = np.mean(np.sort(c[np.invert(np.isnan(c))])[-2:])
c_m = 0 if 2000 > c_m >= 0 else c_m
c_m = 1 if 4000 > c_m >= 2000 else c_m
c_m = 2 if 6000 > c_m >= 4000 else c_m
c_m = 3 if 8000 > c_m >= 6000 else c_m
c_m = 4 if 15000 > c_m >= 8000 else c_m
if not check_oblique(satzen[k]):
continue
if is_day(solzen[k]):
day_idxs.append(k)
day_cth_max.append(c_m)
else:
nght_idxs.append(k)
nght_cth_max.append(c_m)
num_tiles = num_lines * num_elems
num_day_tiles = len(day_idxs)
num_nght_tiles = len(nght_idxs)
day_cth_max = np.array(day_cth_max)
nght_cth_max = np.array(nght_cth_max)
# initialize output arrays
probs_2d_dct = {flvl: None for flvl in flight_levels}
preds_2d_dct = {flvl: None for flvl in flight_levels}
for flvl in flight_levels:
fd_preds = np.zeros(num_lines * num_elems, dtype=np.int8)
fd_preds[:] = -1
fd_probs = np.zeros(num_lines * num_elems, dtype=np.float32)
fd_probs[:] = -1.0
preds_2d_dct[flvl] = fd_preds
probs_2d_dct[flvl] = fd_probs
if (day_night == 'AUTO' or day_night == 'DAY') and num_day_tiles > 0:
day_idxs = np.array(day_idxs)
day_grd_dct = {name: None for name in day_train_params}
for name in day_train_params:
day_grd_dct[name] = data_dct[name][day_idxs,]
if use_max_cth_level:
day_grd_dct['cth_high_avg'] = day_cth_max
preds_day_dct, probs_day_dct = \
model_module.run_evaluate_static_2(day_model, day_grd_dct, num_day_tiles, prob_thresh=prob_thresh,
flight_levels=flight_levels)
day_idxs = np.array(day_idxs)
for flvl in flight_levels:
day_preds = preds_day_dct[flvl]
day_probs = probs_day_dct[flvl]
fd_preds = preds_2d_dct[flvl]
fd_probs = probs_2d_dct[flvl]
fd_preds[day_idxs] = day_preds[:]
fd_probs[day_idxs] = day_probs[:]
if (day_night == 'AUTO' or day_night == 'NIGHT') and num_nght_tiles > 0:
nght_idxs = np.array(nght_idxs)
nght_grd_dct = {name: None for name in nght_train_params}
for name in nght_train_params:
nght_grd_dct[name] = data_dct[name][nght_idxs,]
if use_max_cth_level:
nght_grd_dct['cth_high_avg'] = nght_cth_max
preds_nght_dct, probs_nght_dct = \
model_module.run_evaluate_static_2(night_model, nght_grd_dct, num_nght_tiles, prob_thresh=prob_thresh,
flight_levels=flight_levels)
nght_idxs = np.array(nght_idxs)
for flvl in flight_levels:
nght_preds = preds_nght_dct[flvl]
nght_probs = probs_nght_dct[flvl]
fd_preds = preds_2d_dct[flvl]
fd_probs = probs_2d_dct[flvl]
fd_preds[nght_idxs] = nght_preds[:]
fd_probs[nght_idxs] = nght_probs[:]
for flvl in flight_levels:
fd_preds = preds_2d_dct[flvl]
fd_probs = probs_2d_dct[flvl]
preds_2d_dct[flvl] = fd_preds.reshape((num_lines, num_elems))
probs_2d_dct[flvl] = fd_probs.reshape((num_lines, num_elems))
dto, _ = get_time_tuple_utc(ts)
dto_0 = dto - datetime.timedelta(minutes=30)
dto_1 = dto + datetime.timedelta(minutes=30)
ts_0 = dto_0.timestamp()
ts_1 = dto_1.timestamp()
if pirep_file is not None:
_, keep_lons, keep_lats, _ = time_filter_3(ice_dict, ts_0, ts_1, alt_lo, alt_hi)
elif obs_times is not None:
keep = np.logical_and(obs_times >= ts_0, obs_times < ts_1)
keep = np.where(keep, np.logical_and(obs_alt >= alt_lo, obs_alt < alt_hi), False)
keep = np.where(keep, obs_intensity >= icing_intensity_plot_min, False)
keep_lons = obs_lons[keep]
keep_lats = obs_lats[keep]
keep_obs_intensity = obs_intensity[keep]
else:
keep_lons = None
keep_lats = None
keep_obs_intensity = None
prob_s = []
for flvl in flight_levels:
probs = probs_2d_dct[flvl]
prob_s.append(probs)
prob_s = np.stack(prob_s, axis=-1)
max_prob = np.max(prob_s, axis=2)
# max_prob = medfilt2d(max_prob)
max_prob = np.where(max_prob < prob_thresh, np.nan, max_prob)
make_icing_image(h5f, max_prob, None, None, clvrx_str_time, satellite, domain,
ice_lons_vld=keep_lons, ice_lats_vld=keep_lats, ice_intensity=keep_obs_intensity, extent=extent)
print('Done: ', clvrx_str_time)
h5f.close()
def run_icing_predict_image_fcn(clvrx_dir='/Users/tomrink/data/clavrx/RadC/', output_dir=homedir,
day_model_path=model_path_day, night_model_path=model_path_night,
prob_thresh=0.5, satellite='GOES16', domain='CONUS', day_night='AUTO',
l1b_andor_l2='BOTH', use_flight_altitude=True, use_max_cth_level=False,
extent=[-105, -70, 15, 50],
pirep_file='/Users/tomrink/data/pirep/pireps_202109200000_202109232359.csv',
obs_lons=None, obs_lats=None, obs_times=None, obs_alt=None, flight_level=None, obs_intensity=None):
import deeplearning.icing_fcn as icing_fcn
model_module = icing_fcn
if day_model_path is not None:
day_model = model_module.load_model(day_model_path, day_night='DAY', l1b_andor_l2=l1b_andor_l2,
use_flight_altitude=use_flight_altitude)
if night_model_path is not None:
night_model = model_module.load_model(night_model_path, day_night='NIGHT', l1b_andor_l2=l1b_andor_l2,
use_flight_altitude=use_flight_altitude)
if use_flight_altitude is True:
flight_levels = [0, 1, 2, 3, 4]
if use_max_cth_level:
flight_levels = [-1]
else:
flight_levels = [0]
if pirep_file is not None:
ice_dict, no_ice_dict, neg_ice_dict = setup(pirep_file)
alt_lo, alt_hi = 0.0, 15000.0
if flight_level is not None:
alt_lo, alt_hi = flt_level_ranges[flight_level]
day_train_params, _, _ = get_training_parameters(day_night='DAY', l1b_andor_l2=l1b_andor_l2)
nght_train_params, _, _ = get_training_parameters(day_night='NIGHT', l1b_andor_l2=l1b_andor_l2)
if day_night == 'AUTO':
train_params = list(set(day_train_params + nght_train_params))
elif day_night == 'DAY':
train_params = day_train_params
elif day_night == 'NIGHT':
train_params = nght_train_params
if satellite == 'H08':
clvrx_ds = CLAVRx_H08(clvrx_dir)
elif satellite == 'H09':
clvrx_ds = CLAVRx_H09(clvrx_dir)
else:
clvrx_ds = CLAVRx(clvrx_dir)
clvrx_files = clvrx_ds.flist
for fidx, fname in enumerate(clvrx_files):
h5f = h5py.File(fname, 'r')
dto = clvrx_ds.get_datetime(fname)
ts = dto.timestamp()
clvrx_str_time = dto.strftime('%Y-%m-%d_%H:%M')
dto, _ = get_time_tuple_utc(ts)
dto_0 = dto - datetime.timedelta(minutes=30)
dto_1 = dto + datetime.timedelta(minutes=30)
ts_0 = dto_0.timestamp()
ts_1 = dto_1.timestamp()
if pirep_file is not None:
_, keep_lons, keep_lats, _ = time_filter_3(ice_dict, ts_0, ts_1, alt_lo, alt_hi)
elif obs_times is not None:
keep = np.logical_and(obs_times >= ts_0, obs_times < ts_1)
keep = np.where(keep, np.logical_and(obs_alt >= alt_lo, obs_alt < alt_hi), False)
keep_lons = obs_lons[keep]
keep_lats = obs_lats[keep]
else:
keep_lons = None
keep_lats = None
data_dct, solzen, satzen, ll, cc = prepare_evaluate(h5f, name_list=train_params, satellite=satellite, domain=domain, offset=8)
num_elems = len(cc)
num_lines = len(ll)
if fidx == 0:
nav = get_navigation(satellite, domain)
lons_2d, lats_2d, x_rad, y_rad = get_lon_lat_2d_mesh(nav, ll, cc)
day_idxs = solzen < 80.0
day_idxs = day_idxs.flatten()
num_day_tiles = np.sum(day_idxs)
nght_idxs = solzen > 100.0
nght_idxs = nght_idxs.flatten()
num_nght_tiles = np.sum(nght_idxs)
# initialize output arrays
probs_2d_dct = {flvl: None for flvl in flight_levels}
preds_2d_dct = {flvl: None for flvl in flight_levels}
for flvl in flight_levels:
fd_preds = np.zeros(num_lines * num_elems, dtype=np.int8)
fd_preds[:] = -1
fd_probs = np.zeros(num_lines * num_elems, dtype=np.float32)
fd_probs[:] = -1.0
preds_2d_dct[flvl] = fd_preds
probs_2d_dct[flvl] = fd_probs
if (day_night == 'AUTO' or day_night == 'DAY') and num_day_tiles > 0:
preds_day_dct, probs_day_dct = icing_fcn.run_evaluate_static_2(day_model, data_dct, 1,
prob_thresh=prob_thresh,
flight_levels=flight_levels)
for flvl in flight_levels:
preds = preds_day_dct[flvl].flatten()
probs = probs_day_dct[flvl].flatten()
fd_preds = preds_2d_dct[flvl]
fd_probs = probs_2d_dct[flvl]
fd_preds[day_idxs] = preds[day_idxs]
fd_probs[day_idxs] = probs[day_idxs]
if (day_night == 'AUTO' or day_night == 'NIGHT') and num_nght_tiles > 0:
preds_nght_dct, probs_nght_dct = icing_fcn.run_evaluate_static_2(night_model, data_dct, 1,
prob_thresh=prob_thresh,
flight_levels=flight_levels)
for flvl in flight_levels:
preds = preds_nght_dct[flvl].flatten()
probs = probs_nght_dct[flvl].flatten()
fd_preds = preds_2d_dct[flvl]
fd_probs = probs_2d_dct[flvl]
fd_preds[nght_idxs] = preds[nght_idxs]
fd_probs[nght_idxs] = probs[nght_idxs]
for flvl in flight_levels:
fd_preds = preds_2d_dct[flvl]
fd_probs = probs_2d_dct[flvl]
preds_2d_dct[flvl] = fd_preds.reshape((num_lines, num_elems))
probs_2d_dct[flvl] = fd_probs.reshape((num_lines, num_elems))
prob_s = []
for flvl in flight_levels:
probs = probs_2d_dct[flvl]
prob_s.append(probs)
prob_s = np.stack(prob_s, axis=-1)
max_prob = np.max(prob_s, axis=2)
max_prob = np.where(max_prob < 0.5, np.nan, max_prob)
make_icing_image(h5f, max_prob, None, None, clvrx_str_time, satellite, domain,
ice_lons_vld=keep_lons, ice_lats_vld=keep_lats, extent=extent)
print('Done: ', clvrx_str_time)
h5f.close()
def run_icing_predict_image_1x1(clvrx_dir='/Users/tomrink/data/clavrx/RadC/', output_dir=homedir,
day_model_path=model_path_day, night_model_path=model_path_night,
prob_thresh=0.5, satellite='GOES16', domain='CONUS', day_night='AUTO',
l1b_andor_l2='BOTH', use_flight_altitude=True, use_max_cth_level=False,
extent=[-105, -70, 15, 50],
pirep_file='/Users/tomrink/data/pirep/pireps_202109200000_202109232359.csv',
obs_lons=None, obs_lats=None, obs_times=None, obs_alt=None, flight_level=None, obs_intensity=None):
# load parameter stats and model from disk
stdSclr_day = joblib.load('/home/rink/stdSclr_4_day.pkl')
day_model = joblib.load('/home/rink/icing_gbm_day.pkl')
stdSclr_nght = joblib.load('/home/rink/stdSclr_4_nght.pkl')
nght_model = joblib.load('/home/rink/icing_gbm_nght.pkl')
if use_flight_altitude is True:
flight_levels = [0, 1, 2, 3, 4]
if use_max_cth_level:
flight_levels = [-1]
else:
flight_levels = [0]
if pirep_file is not None:
ice_dict, no_ice_dict, neg_ice_dict = setup(pirep_file)
alt_lo, alt_hi = 0.0, 15000.0
if flight_level is not None:
alt_lo, alt_hi = flt_level_ranges[flight_level]
day_train_params = ['cld_temp_acha', 'supercooled_cloud_fraction', 'cld_reff_dcomp', 'cld_opd_dcomp']
nght_train_params = ['cld_temp_acha', 'supercooled_cloud_fraction', 'cld_reff_acha', 'cld_opd_acha']
#
# if day_night == 'AUTO':
# train_params = list(set(day_train_params + nght_train_params))
# elif day_night == 'DAY':
# train_params = day_train_params
# elif day_night == 'NIGHT':
# train_params = nght_train_params
if satellite == 'H08':
clvrx_ds = CLAVRx_H08(clvrx_dir)
elif satellite == 'H09':
clvrx_ds = CLAVRx_H09(clvrx_dir)
else:
clvrx_ds = CLAVRx(clvrx_dir)
clvrx_files = clvrx_ds.flist
for fidx, fname in enumerate(clvrx_files):
h5f = h5py.File(fname, 'r')
dto = clvrx_ds.get_datetime(fname)
ts = dto.timestamp()
clvrx_str_time = dto.strftime('%Y-%m-%d_%H:%M')
dto, _ = get_time_tuple_utc(ts)
dto_0 = dto - datetime.timedelta(minutes=30)
dto_1 = dto + datetime.timedelta(minutes=30)
ts_0 = dto_0.timestamp()
ts_1 = dto_1.timestamp()
if pirep_file is not None:
_, keep_lons, keep_lats, _ = time_filter_3(ice_dict, ts_0, ts_1, alt_lo, alt_hi)
elif obs_times is not None:
keep = np.logical_and(obs_times >= ts_0, obs_times < ts_1)
keep = np.where(keep, np.logical_and(obs_alt >= alt_lo, obs_alt < alt_hi), False)
keep_lons = obs_lons[keep]
keep_lats = obs_lats[keep]
else:
keep_lons = None
keep_lats = None
varX_day, solzen, satzen, cldmsk, ll, cc = prepare_evaluate1x1(h5f, name_list=day_train_params, satellite=satellite, domain=domain, offset=8)
varX_ngth, solzen, satzen, cldmsk, ll, cc = prepare_evaluate1x1(h5f, name_list=nght_train_params, satellite=satellite, domain=domain, offset=8)
num_elems = len(cc)
num_lines = len(ll)
print('data: ', varX_day.shape, varX_ngth.shape, solzen.shape)
print('num_lines, num_elems: ', num_lines, num_elems)
day_idxs = solzen < 80.0
num_day_tiles = np.sum(day_idxs)
print('num day tiles: ', num_day_tiles)
nght_idxs = solzen > 100.0
num_nght_tiles = np.sum(nght_idxs)
print('num nght tiles: ', num_nght_tiles)
clr_idxs = cldmsk < 2
num_clr_tiles = np.sum(clr_idxs)
print('num clear tiles: ', num_clr_tiles)
fd_preds = np.zeros(num_lines * num_elems, dtype=np.int8)
fd_probs = np.zeros(num_lines * num_elems, dtype=np.float32)
fd_preds[:] = -1
fd_probs[:] = -1.0
if (day_night == 'AUTO' or day_night == 'DAY') and num_day_tiles > 0:
varX_std = stdSclr_day.transform(varX_day)
varX_std = np.where(np.isnan(varX_std), 0, varX_std)
probs = day_model.predict_proba(varX_std)[:, 1]
fd_probs[day_idxs] = probs[day_idxs]
if (day_night == 'AUTO' or day_night == 'NIGHT') and num_nght_tiles > 0:
varX_std = stdSclr_nght.transform(varX_ngth)
varX_std = np.where(np.isnan(varX_std), 0, varX_std)
probs = nght_model.predict_proba(varX_std)[:, 1]
fd_probs[np.invert(day_idxs)] = probs[np.invert(day_idxs)]
fd_probs[clr_idxs] = -1.0
max_prob = fd_probs.reshape((num_lines, num_elems))
make_icing_image(h5f, max_prob, None, None, clvrx_str_time, satellite, domain,
ice_lons_vld=keep_lons, ice_lats_vld=keep_lats, extent=extent)
print('Done: ', clvrx_str_time)
h5f.close()