geos_nav.py 10.22 KiB
import numpy as np
from scipy import linalg
from util.util import haversine_np
DEG_TO_RAD = np.pi/180.0;
RAD_TO_DEG = 180.0/np.pi;
r_pol = 6356.5838 # km
r_eq = 6378.1690 # km
# AHI -------------------------------
# h = 42164.0 # barycentric height, km
# sub_lon = 140.7
# sub_lon *= DEG_TO_RAD
# scan_geom = 'GEOS'
# signs modified from static nav file to work with ABI FGF code
# CFAC = 5.588799E-05
# LFAC = -5.588799E-05
# COFF = -0.1537199
# LOFF = 0.1537199
# computed from static nav file (lon, lat) grid
# Note 0-based to the pixel center
# CFAC = 5.58924125e-05
# LFAC = -5.58810490e-05
# COFF = -1.53678977e-01
# LOFF = 1.53644345e-01
# GOES ------------------------------
h = 42164.16 # barycentric height, km
invf = 298.2572221 # inverse flattening
f = 1.0/invf
fp = 1.0/((1.0-f)*(1.0-f))
d = h*h - r_eq*r_eq
scan_geom = 'GOES'
sub_lon = -75.0
sub_lon *= DEG_TO_RAD
# official for FD
CFAC = 5.6E-05
LFAC = -5.6E-05
COFF = -0.151844
LOFF = 0.151844
# official for CONUS
#CFAC = 5.6E-05
#COFF = -0.101332
#LFAC = -5.6E-05
#LOFF = 0.128212
# computed for CLAVRx FD
#CFAC = 5.60016368e-05
#LFAC = -5.59941969e-05
#COFF = -1.51780260e-01
#LOFF = 1.51773560e-01
# 65536 = 2^16
def goes_to_geos(lamda_goes, theta_goes):
theta_geos = np.arcsin(np.sin(theta_goes) * np.cos(lamda_goes))
lamda_geos = np.arctan(np.tan(lamda_goes) / np.cos(theta_goes))
return lamda_geos, theta_geos
class GEOSNavigation:
def __init__(self, sub_lon=-75.0, barycentric_height=42164.16, scan_geom='GOES', CFAC=5.6E-05, LFAC=-5.6E-05, COFF=-0.151844, LOFF=0.151844, num_elems=5424, num_lines=5424):
self.sub_lon = sub_lon * DEG_TO_RAD
self.h = barycentric_height
self.scan_geom = scan_geom
self.CFAC = CFAC
self.LFAC = LFAC
self.COFF = COFF
self.LOFF = LOFF
self.num_lines = num_lines
self.num_elems = num_elems
def earth_to_sat(self, geographic_lon, geographic_lat):
geographic_lon *= DEG_TO_RAD
geographic_lat *= DEG_TO_RAD
geocentric_lat = np.arctan(((r_pol*r_pol)/(r_eq*r_eq))*np.tan(geographic_lat))
r_earth = r_pol / np.sqrt(1.0 - ((r_eq * r_eq - r_pol * r_pol) / (r_eq * r_eq)) * np.cos(geocentric_lat) * np.cos(geocentric_lat))
r_1 = self.h - r_earth * np.cos(geocentric_lat) * np.cos(geographic_lon - self.sub_lon)
r_2 = -r_earth * np.cos(geocentric_lat) * np.sin(geographic_lon - self.sub_lon)
r_3 = r_earth * np.sin(geocentric_lat)
r = np.sqrt(r_1*r_1 + r_2*r_2 + r_3*r_3)
if r >= self.h:
return np.nan, np.nan
if self.scan_geom == 'GEOS':
lamda_sat = np.arctan(-r_2/r_1)
theta_sat = np.arcsin(r_3/np.sqrt(r_1*r_1 + r_2*r_2 + r_3*r_3))
elif self.scan_geom == 'GOES':
lamda_sat = np.arcsin(-r_2/np.sqrt(r_1*r_1 + r_2*r_2 + r_3*r_3))
theta_sat = np.arctan(r_3/r_1)
return lamda_sat, theta_sat
def earth_to_sat_s(self, geographic_lon, geographic_lat):
geographic_lon = geographic_lon * DEG_TO_RAD
geographic_lat = geographic_lat * DEG_TO_RAD
geocentric_lat = np.arctan(((r_pol*r_pol)/(r_eq*r_eq))*np.tan(geographic_lat))
r_earth = r_pol / np.sqrt(1.0 - ((r_eq * r_eq - r_pol * r_pol) / (r_eq * r_eq)) * (np.cos(geocentric_lat))**2)
r_1 = self.h - r_earth * np.cos(geocentric_lat) * np.cos(geographic_lon - self.sub_lon)
r_2 = -r_earth * np.cos(geocentric_lat) * np.sin(geographic_lon - self.sub_lon)
r_3 = r_earth * np.sin(geocentric_lat)
r = np.sqrt(r_1*r_1 + r_2*r_2 + r_3*r_3)
if self.scan_geom == 'GEOS':
lamda_sat = np.arctan(-r_2/r_1)
theta_sat = np.arcsin(r_3/np.sqrt(r_1*r_1 + r_2*r_2 + r_3*r_3))
elif self.scan_geom == 'GOES':
lamda_sat = np.arcsin(-r_2/np.sqrt(r_1*r_1 + r_2*r_2 + r_3*r_3))
theta_sat = np.arctan(r_3/r_1)
lamda_sat = np.where(r > self.h, np.nan, lamda_sat)
theta_sat = np.where(r > self.h, np.nan, theta_sat)
return lamda_sat, theta_sat
def sat_to_lc(self, lamda, theta):
# c = COFF + np.rint(lamda * (1/np.power(2, 16)) * CFAC)
# l = LOFF + np.rint(theta * (1/np.power(2, 16)) * LFAC)
# (float(2 ** 16) * (float(lc) - off)) / float(fac) * DEG_TO_RAD
cc = (lamda - self.COFF) / self.CFAC
ll = (theta - self.LOFF) / self.LFAC
cc = np.floor(cc + 0.5)
ll = np.floor(ll + 0.5)
cc = cc.astype(np.int32)
ll = ll.astype(np.int32)
return cc, ll
def earth_to_lc(self, lon, lat):
lamda, theta = self.earth_to_sat(lon, lat)
if np.isnan(lamda):
return None, None
cc, ll = self.sat_to_lc(lamda, theta)
return cc, ll
def earth_to_lc_s(self, lons, lats):
lamda, theta = self.earth_to_sat_s(lons, lats)
cc, ll = self.sat_to_lc(lamda, theta)
cc = np.where(np.isnan(lamda), -1, cc)
cc = np.where(cc < 0, -1, cc)
cc = np.where(cc >= self.num_elems, -1, cc)
ll = np.where(np.isnan(theta), -1, ll)
ll = np.where(ll < 0, -1, ll)
ll = np.where(ll >= self.num_lines, -1, ll)
cc[ll == -1] = -1
ll[cc == -1] = -1
return cc, ll
def lc_to_earth(self, cc, ll):
x = cc * self.CFAC + self.COFF
y = ll * self.LFAC + self.LOFF
lon, lat = self.sat_to_earth_s(x, y)
return lon, lat
def earth_to_indexs(self, lons, lats, len_x):
num = lons.shape[0]
idxs = []
for i in range(num):
cc, ll = self.earth_to_lc(lons[i], lats[i])
if cc is None:
idxs.append(-1)
else:
idx = ll * len_x + cc
idxs.append(idx)
idxs = np.array(idxs)
return idxs
def sat_to_earth_s(self, x, y):
if self.scan_geom == 'GOES':
x, y = goes_to_geos(x, y)
c1 = (h * np.cos(x) * np.cos(y)) * (h * np.cos(x) * np.cos(y))
c2 = (np.cos(y) * np.cos(y) + fp * np.sin(y) * np.sin(y)) * d
c1 = np.where(c1 < c2, np.nan, c1)
c2 = np.where(c1 < c2, np.nan, c2)
s_d = np.sqrt(c1 - c2)
s_n = (h * np.cos(x) * np.cos(y) - s_d) / (np.cos(y) * np.cos(y) + fp * np.sin(y) * np.sin(y))
s_1 = h - s_n * np.cos(x) * np.cos(y)
s_2 = s_n * np.sin(x) * np.cos(y)
s_3 = s_n * np.sin(y)
s_xy = np.sqrt(s_1 * s_1 + s_2 * s_2)
geographic_lon = np.arctan(s_2 / s_1) + self.sub_lon
geographic_lat = np.arctan(fp * (s_3 / s_xy))
geographic_lon *= RAD_TO_DEG
geographic_lat *= RAD_TO_DEG
return geographic_lon, geographic_lat
def sat_to_earth(self, x, y):
if self.scan_geom == 'GOES':
x, y = goes_to_geos(x, y)
c1 = (h * np.cos(x) * np.cos(y)) * (h * np.cos(x) * np.cos(y))
c2 = (np.cos(y) * np.cos(y) + fp * np.sin(y) * np.sin(y)) * d
if c1 < c2:
return np.nan, np.nan
s_d = np.sqrt(c1 - c2)
s_n = (h * np.cos(x) * np.cos(y) - s_d) / (np.cos(y) * np.cos(y) + fp * np.sin(y) * np.sin(y))
s_1 = h - s_n * np.cos(x) * np.cos(y)
s_2 = s_n * np.sin(x) * np.cos(y)
s_3 = s_n * np.sin(y)
s_xy = np.sqrt(s_1 * s_1 + s_2 * s_2)
geographic_lon = np.arctan(s_2 / s_1) + self.sub_lon
geographic_lat = np.arctan(fp * (s_3 / s_xy))
geographic_lon *= RAD_TO_DEG
geographic_lat *= RAD_TO_DEG
return geographic_lon, geographic_lat
def check_inside(self, lon, lat):
return True
def get_navigation(satellite='GOES16', domain='FD'):
nav = None
if satellite == 'GOES16':
if domain == 'FD':
nav = GEOSNavigation()
elif domain == 'CONUS':
nav = GEOSNavigation(sub_lon=-75.0, CFAC=5.6E-05, COFF=-0.101332,
LFAC=-5.6E-05, LOFF=0.128212, num_elems=2500, num_lines=1500)
elif satellite == 'GOES17':
if domain == 'FD':
nav = GEOSNavigation(sub_lon=-137.0)
elif domain == 'CONUS':
pass
elif satellite == 'H08':
nav = GEOSNavigation(sub_lon=140.7, barycentric_height=42164.0, scan_geom='GEOS',
CFAC=5.58879902955962e-05, LFAC=-5.58879902955962e-05,
COFF=-0.153719917308037, LOFF=0.153719917308037, num_elems=5500, num_lines=5500)
elif satellite == 'H09':
nav = GEOSNavigation(sub_lon=140.7, barycentric_height=42164.0, scan_geom='GEOS',
CFAC=5.58879902955962e-05, LFAC=-5.58879902955962e-05,
COFF=-0.153719917308037, LOFF=0.153719917308037, num_elems=5500, num_lines=5500)
return nav
def get_lon_lat_2d_mesh(nav, ll, cc, offset=0):
num_elems = len(cc)
num_lines = len(ll)
cc = np.array(cc)
ll = np.array(ll)
cc[:] += offset
ll[:] += offset
x_rad = cc * nav.CFAC + nav.COFF
y_rad = ll * nav.LFAC + nav.LOFF
ll, cc = np.meshgrid(ll, cc, indexing='ij')
cc = cc.flatten()
ll = ll.flatten()
lon_s, lat_s = nav.lc_to_earth(cc, ll)
lons_2d = lon_s.reshape((num_lines, num_elems))
lats_2d = lat_s.reshape((num_lines, num_elems))
return lons_2d, lats_2d, x_rad, y_rad
# def compute_scale_offset(lon_a, lat_a, col_a, line_a, lon_b, lat_b, col_b, line_b):
# lamda_a, theta_a = earth_to_sat(lon_a, lat_a)
# lamda_b, theta_b = earth_to_sat(lon_b, lat_b)
#
# # To setup the problem below
# # (CFAC * col_a) + COFF = lamda_a
# # (CFAC * col_b) + COFF = lamda_b
#
# # (LFAC * line_a) + LOFF = theta_a
# # (LFAC * line_b) + LOFF = theta_b
#
# a = np.array([[col_a, 1], [col_b, 1]])
# b = np.array([lamda_a, lamda_b])
# x = linalg.solve(a, b)
# print(x)
#
# a = np.array([[line_a, 1], [line_b, 1]])
# b = np.array([theta_a, theta_b])
# x = linalg.solve(a, b)
# print(x)
#
#
# def test(flons, flats):
# fflons = flons.flatten()
# fflats = flats.flatten()
# num = len(fflons)
#
# for i in range(0, num-1, 50000):
# lon = fflons[i]
# lat = fflats[i]
# if lon == -999.0:
# continue
# c, l = earth_to_lc(lon, lat)
# print(lon, flons[l,c])
# print(lat, flats[l,c])
# print(haversine_np(lon, lat, flons[l,c], flats[l,c]))
# print('-----------------------')