Skip to content
Snippets Groups Projects
Select Git revision
  • 5e6706b2be2d0d047877fa580a8d4186db7472d3
  • master default protected
  • use_flight_altitude
  • distribute
4 results

performance_diagrams.py

Blame
  • icing_fcn.py 46.25 KiB
    import tensorflow as tf
    from util.setup import logdir, modeldir, cachepath, now, ancillary_path, home_dir
    from util.util import EarlyStop, normalize, make_for_full_domain_predict, get_training_parameters
    from util.geos_nav import get_navigation
    
    import os, datetime
    import numpy as np
    import pickle
    import h5py
    
    
    LOG_DEVICE_PLACEMENT = False
    
    PROC_BATCH_SIZE = 4096
    PROC_BATCH_BUFFER_SIZE = 50000
    
    NumClasses = 2
    if NumClasses == 2:
        NumLogits = 1
    else:
        NumLogits = NumClasses
    NumFlightLevels = 5
    
    BATCH_SIZE = 128
    NUM_EPOCHS = 60
    
    TRACK_MOVING_AVERAGE = False
    EARLY_STOP = True
    
    TRIPLET = False
    CONV3D = False
    
    NOISE_TRAINING = True
    NOISE_STDDEV = 0.001
    DO_AUGMENT = True
    
    img_width = 16
    
    mean_std_dct = {}
    mean_std_file = ancillary_path+'mean_std_lo_hi_l2.pkl'
    f = open(mean_std_file, 'rb')
    mean_std_dct_l2 = pickle.load(f)
    f.close()
    
    mean_std_file = ancillary_path+'mean_std_lo_hi_l1b.pkl'
    f = open(mean_std_file, 'rb')
    mean_std_dct_l1b = pickle.load(f)
    f.close()
    
    mean_std_dct.update(mean_std_dct_l1b)
    mean_std_dct.update(mean_std_dct_l2)
    
    # --  NIGHT L2 -----------------------------
    train_params_l2_night = ['cld_height_acha', 'cld_geo_thick', 'cld_temp_acha', 'cld_press_acha', 'supercooled_cloud_fraction',
                             'cld_emiss_acha', 'conv_cloud_fraction', 'cld_reff_acha', 'cld_opd_acha']
    # -- DAY L2 --------------------------------
    train_params_l2_day = ['cld_height_acha', 'cld_geo_thick', 'cld_temp_acha', 'cld_press_acha', 'supercooled_cloud_fraction',
                           'cld_emiss_acha', 'conv_cloud_fraction', 'cld_reff_dcomp', 'cld_opd_dcomp', 'iwc_dcomp', 'lwc_dcomp']
    #                       'cld_reff_dcomp_1', 'cld_opd_dcomp_1', 'cld_reff_dcomp_2', 'cld_opd_dcomp_2', 'cld_reff_dcomp_3', 'cld_opd_dcomp_3']
    # -- DAY L1B --------------------------------
    train_params_l1b_day = ['temp_10_4um_nom', 'temp_11_0um_nom', 'temp_12_0um_nom', 'temp_13_3um_nom', 'temp_3_75um_nom',
                            'temp_6_2um_nom', 'temp_6_7um_nom', 'temp_7_3um_nom', 'temp_8_5um_nom', 'temp_9_7um_nom',
                            'refl_0_47um_nom', 'refl_0_65um_nom', 'refl_0_86um_nom', 'refl_1_38um_nom', 'refl_1_60um_nom']
    # -- NIGHT L1B -------------------------------
    train_params_l1b_night = ['temp_10_4um_nom', 'temp_11_0um_nom', 'temp_12_0um_nom', 'temp_13_3um_nom', 'temp_3_75um_nom',
                              'temp_6_2um_nom', 'temp_6_7um_nom', 'temp_7_3um_nom', 'temp_8_5um_nom', 'temp_9_7um_nom']
    # -- DAY LUNAR ---------------------------------
    # train_params_l1b = ['cld_height_acha', 'cld_geo_thick', 'cld_temp_acha', 'cld_press_acha', 'supercooled_cloud_fraction',
    #                     'cld_emiss_acha', 'conv_cloud_fraction', 'cld_reff_dcomp', 'cld_opd_dcomp', 'iwc_dcomp', 'lwc_dcomp']
    # ---------------------------------------------
    
    # train_params = train_params_l1b_day + train_params_l2_day
    # -- Zero out params (Experimentation Only) ------------
    zero_out_params = ['cld_reff_dcomp', 'cld_opd_dcomp', 'iwc_dcomp', 'lwc_dcomp']
    DO_ZERO_OUT = False
    
    lunar_map = {'cld_reff_dcomp': 'cld_reff_nlcomp', 'cld_opd_dcomp': 'cld_opd_nlcomp', 'iwc_dcomp': None, 'lwc_dcomp': None}
    
    
    def build_residual_block_conv2d(x_in, num_filters, activation, padding='SAME', drop_rate=0.5,
                                    do_drop_out=True, do_batch_norm=True):
        skip = x_in
    
        conv = tf.keras.layers.Conv2D(num_filters, kernel_size=5, strides=1, padding=padding, activation=activation)(x_in)
        conv = tf.keras.layers.MaxPool2D(padding=padding)(conv)
        if do_drop_out:
            conv = tf.keras.layers.Dropout(drop_rate)(conv)
        if do_batch_norm:
            conv = tf.keras.layers.BatchNormalization()(conv)
    
        skip = tf.keras.layers.Conv2D(num_filters, kernel_size=3, strides=1, padding=padding, activation=None)(skip)
        skip = tf.keras.layers.MaxPool2D(padding=padding)(skip)
        if do_drop_out:
            skip = tf.keras.layers.Dropout(drop_rate)(skip)
        if do_batch_norm:
            skip = tf.keras.layers.BatchNormalization()(skip)
    
        conv = conv + skip
        conv = tf.keras.layers.LeakyReLU()(conv)
        print(conv.shape)
    
        return conv
    
    
    def build_residual_block_1x1(input_layer, num_filters, activation, block_name, padding='SAME', drop_rate=0.5,
                                 do_drop_out=True, do_batch_norm=True):
    
        with tf.name_scope(block_name):
            skip = input_layer
    
            if do_drop_out:
                input_layer = tf.keras.layers.Dropout(drop_rate)(input_layer)
            if do_batch_norm:
                input_layer = tf.keras.layers.BatchNormalization()(input_layer)
            conv = tf.keras.layers.Conv2D(num_filters, kernel_size=1, strides=1, padding=padding, activation=activation)(input_layer)
            print(conv.shape)
    
            if do_drop_out:
                conv = tf.keras.layers.Dropout(drop_rate)(conv)
            if do_batch_norm:
                conv = tf.keras.layers.BatchNormalization()(conv)
            conv = tf.keras.layers.Conv2D(num_filters, kernel_size=1, strides=1, padding=padding, activation=None)(conv)
    
            conv = conv + skip
            conv = tf.keras.layers.LeakyReLU()(conv)
            print(conv.shape)
    
        return conv
    
    
    class IcingIntensityFCN:
        
        def __init__(self, day_night='DAY', l1b_or_l2='both', satellite='GOES16', use_flight_altitude=False, datapath=None):
    
            if day_night == 'DAY':
                self.train_params_l1b = train_params_l1b_day
                self.train_params_l2 = train_params_l2_day
                if l1b_or_l2 == 'both':
                    self.train_params = train_params_l1b_day + train_params_l2_day
                elif l1b_or_l2 == 'l1b':
                    self.train_params = train_params_l1b_day
                elif l1b_or_l2 == 'l2':
                    self.train_params = train_params_l2_day
            else:
                self.train_params_l1b = train_params_l1b_night
                self.train_params_l2 = train_params_l2_night
                if l1b_or_l2 == 'both':
                    self.train_params = train_params_l1b_night + train_params_l2_night
                elif l1b_or_l2 == 'l1b':
                    self.train_params = train_params_l1b_night
                elif l1b_or_l2 == 'l2':
                    self.train_params = train_params_l2_night
    
            # self.train_params, self.train_params_l1b, self.train_params_l2 = get_training_parameters(day_night=day_night, l1b_andor_l2=l1b_or_l2, satellite=satellite)
    
            self.train_data = None
            self.train_label = None
            self.test_data = None
            self.test_label = None
            self.test_data_denorm = None
            
            self.train_dataset = None
            self.inner_train_dataset = None
            self.test_dataset = None
            self.eval_dataset = None
            self.X_img = None
            self.X_prof = None
            self.X_u = None
            self.X_v = None
            self.X_sfc = None
            self.inputs = []
            self.y = None
            self.handle = None
            self.inner_handle = None
            self.in_mem_batch = None
    
            self.h5f_l1b_trn = None
            self.h5f_l1b_tst = None
            self.h5f_l2_trn = None
            self.h5f_l2_tst = None
    
            self.logits = None
    
            self.predict_data = None
            self.predict_dataset = None
            self.mean_list = None
            self.std_list = None
            
            self.training_op = None
            self.correct = None
            self.accuracy = None
            self.loss = None
            self.pred_class = None
            self.variable_averages = None
    
            self.global_step = None
    
            self.writer_train = None
            self.writer_valid = None
            self.writer_train_valid_loss = None
    
            self.OUT_OF_RANGE = False
    
            self.abi = None
            self.temp = None
            self.wv = None
            self.lbfp = None
            self.sfc = None
    
            self.in_mem_data_cache = {}
            self.in_mem_data_cache_test = {}
    
            self.model = None
            self.optimizer = None
            self.ema = None
            self.train_loss = None
            self.train_accuracy = None
            self.test_loss = None
            self.test_accuracy = None
            self.test_auc = None
            self.test_recall = None
            self.test_precision = None
            self.test_confusion_matrix = None
            self.test_true_pos = None
            self.test_true_neg = None
            self.test_false_pos = None
            self.test_false_neg = None
    
            self.test_labels = []
            self.test_preds = []
            self.test_probs = None
    
            self.learningRateSchedule = None
            self.num_data_samples = None
            self.initial_learning_rate = None
    
            self.data_dct = None
    
            n_chans = len(self.train_params)
            if TRIPLET:
                n_chans *= 3
            self.X_img = tf.keras.Input(shape=(None, None, n_chans))
    
            self.inputs.append(self.X_img)
            self.inputs.append(tf.keras.Input(shape=(None, None, NumFlightLevels)))
    
            self.flight_level = 0
    
            self.DISK_CACHE = False
    
            self.USE_FLIGHT_ALTITUDE = use_flight_altitude
    
            if datapath is not None:
                self.DISK_CACHE = False
                f = open(datapath, 'rb')
                self.in_mem_data_cache = pickle.load(f)
                f.close()
    
            tf.debugging.set_log_device_placement(LOG_DEVICE_PLACEMENT)
    
            self.ema_trainable_variables = None
    
            # Doesn't seem to play well with SLURM
            # gpus = tf.config.experimental.list_physical_devices('GPU')
            # if gpus:
            #     try:
            #         # Currently, memory growth needs to be the same across GPUs
            #         for gpu in gpus:
            #             tf.config.experimental.set_memory_growth(gpu, True)
            #         logical_gpus = tf.config.experimental.list_logical_devices('GPU')
            #         print(len(gpus), "Physical GPUs,", len(logical_gpus), "Logical GPUs")
            #     except RuntimeError as e:
            #         # Memory growth must be set before GPUs have been initialized
            #         print(e)
    
        def get_in_mem_data_batch(self, idxs, is_training):
    
            # sort these to use as numpy indexing arrays
            nd_idxs = np.array(idxs)
            nd_idxs = np.sort(nd_idxs)
    
            data = []
            for param in self.train_params:
                nda = self.get_parameter_data(param, nd_idxs, is_training)
                nda = normalize(nda, param, mean_std_dct)
                if DO_ZERO_OUT and is_training:
                    try:
                        zero_out_params.index(param)
                        nda[:,] = 0.0
                    except ValueError:
                        pass
                data.append(nda)
            data = np.stack(data)
            data = data.astype(np.float32)
            data = np.transpose(data, axes=(1, 2, 3, 0))
    
            data_alt = self.get_scalar_data(nd_idxs, is_training)
    
            label = self.get_label_data(nd_idxs, is_training)
            label = np.where(label == -1, 0, label)
    
            # binary, two class
            if NumClasses == 2:
                label = np.where(label != 0, 1, label)
                label = label.reshape((label.shape[0], 1))
            elif NumClasses == 3:
                label = np.where(np.logical_or(label == 1, label == 2), 1, label)
                label = np.where(np.invert(np.logical_or(label == 0, label == 1)), 2, label)
                label = label.reshape((label.shape[0], 1))
    
            if is_training and DO_AUGMENT:
                data_ud = np.flip(data, axis=1)
                data_alt_ud = np.copy(data_alt)
                label_ud = np.copy(label)
    
                data_lr = np.flip(data, axis=2)
                data_alt_lr = np.copy(data_alt)
                label_lr = np.copy(label)
    
                data_r1 = np.rot90(data, k=1, axes=(1, 2))
                data_alt_r1 = np.copy(data_alt)
                label_r1 = np.copy(label)
    
                data_r2 = np.rot90(data, k=1, axes=(1, 2))
                data_alt_r2 = np.copy(data_alt)
                label_r2 = np.copy(label)
    
                data = np.concatenate([data, data_ud, data_lr, data_r1, data_r2])
                data_alt = np.concatenate([data_alt, data_alt_ud, data_alt_lr, data_alt_r1, data_alt_r2])
                label = np.concatenate([label, label_ud, label_lr, label_r1, label_r2])
    
            return data, data_alt, label
    
        def get_parameter_data(self, param, nd_idxs, is_training):
            if is_training:
                if param in self.train_params_l1b:
                    h5f = self.h5f_l1b_trn
                else:
                    h5f = self.h5f_l2_trn
            else:
                if param in self.train_params_l1b:
                    h5f = self.h5f_l1b_tst
                else:
                    h5f = self.h5f_l2_tst
    
            nda = h5f[param][nd_idxs,]
            return nda
    
        def get_scalar_data(self, nd_idxs, is_training):
            param = 'flight_altitude'
    
            if is_training:
                if self.h5f_l1b_trn is not None:
                    h5f = self.h5f_l1b_trn
                else:
                    h5f = self.h5f_l2_trn
            else:
                if self.h5f_l1b_tst is not None:
                    h5f = self.h5f_l1b_tst
                else:
                    h5f = self.h5f_l2_tst
    
            nda = h5f[param][nd_idxs,]
    
            if NumFlightLevels == 5:
                nda[np.logical_and(nda >= 0, nda < 2000)] = 0
                nda[np.logical_and(nda >= 2000, nda < 4000)] = 1
                nda[np.logical_and(nda >= 4000, nda < 6000)] = 2
                nda[np.logical_and(nda >= 6000, nda < 8000)] = 3
                nda[np.logical_and(nda >= 8000, nda < 15000)] = 4
            elif NumFlightLevels == 3:
                nda[np.logical_and(nda >= 0, nda < 3000)] = 0
                nda[np.logical_and(nda >= 3000, nda < 6000)] = 1
                nda[np.logical_and(nda >= 6000, nda < 15000)] = 2
    
            nda = tf.one_hot(nda, NumFlightLevels).numpy()
            nda = np.expand_dims(nda, axis=1)
            nda = np.expand_dims(nda, axis=1)
    
            return nda
    
        def get_label_data(self, nd_idxs, is_training):
            # Note: labels will be same for nd_idxs across both L1B and L2
            if is_training:
                if self.h5f_l1b_trn is not None:
                    h5f = self.h5f_l1b_trn
                else:
                    h5f = self.h5f_l2_trn
            else:
                if self.h5f_l1b_tst is not None:
                    h5f = self.h5f_l1b_tst
                else:
                    h5f = self.h5f_l2_tst
    
            label = h5f['icing_intensity'][nd_idxs]
            label = label.astype(np.int32)
            return label
    
        def get_in_mem_data_batch_train(self, idxs):
            return self.get_in_mem_data_batch(idxs, True)
    
        def get_in_mem_data_batch_test(self, idxs):
            return self.get_in_mem_data_batch(idxs, False)
    
        # For full image processing, not quite there yet :(
        # def get_in_mem_data_batch_eval(self, idxs):
        #     data = []
        #     for param in self.train_params:
        #         nda = self.data_dct[param]
        #         nda = normalize(nda, param, mean_std_dct)
        #         data.append(nda)
        #     data = np.stack(data)
        #     data = data.astype(np.float32)
        #     data = np.transpose(data, axes=(1, 2, 0))
        #     data = np.expand_dims(data, axis=0)
        #
        #     nda = np.zeros([1])
        #     nda[0] = self.flight_level
        #     nda = tf.one_hot(nda, 5).numpy()
        #     nda = np.expand_dims(nda, axis=0)
        #     nda = np.expand_dims(nda, axis=0)
        #
        #     return data, nda
    
        def get_in_mem_data_batch_eval(self, idxs):
            # sort these to use as numpy indexing arrays
            nd_idxs = np.array(idxs)
            nd_idxs = np.sort(nd_idxs)
    
            data = []
            for param in self.train_params:
                nda = self.data_dct[param][nd_idxs, ]
                nda = normalize(nda, param, mean_std_dct)
                data.append(nda)
            data = np.stack(data)
            data = data.astype(np.float32)
            data = np.transpose(data, axes=(1, 2, 3, 0))
    
            # TODO: altitude data will be specified by user at run-time
            nda = np.zeros([nd_idxs.size])
            nda[:] = self.flight_level
            nda = tf.one_hot(nda, 5).numpy()
            nda = np.expand_dims(nda, axis=1)
            nda = np.expand_dims(nda, axis=1)
    
            return data, nda
    
        @tf.function(input_signature=[tf.TensorSpec(None, tf.int32)])
        def data_function(self, indexes):
            out = tf.numpy_function(self.get_in_mem_data_batch_train, [indexes], [tf.float32, tf.float32, tf.int32])
            return out
    
        @tf.function(input_signature=[tf.TensorSpec(None, tf.int32)])
        def data_function_test(self, indexes):
            out = tf.numpy_function(self.get_in_mem_data_batch_test, [indexes], [tf.float32, tf.float32, tf.int32])
            return out
    
        @tf.function(input_signature=[tf.TensorSpec(None, tf.int32)])
        def data_function_evaluate(self, indexes):
            # TODO: modify for user specified altitude
            out = tf.numpy_function(self.get_in_mem_data_batch_eval, [indexes], [tf.float32, tf.float32])
            return out
    
        def get_train_dataset(self, indexes):
            indexes = list(indexes)
    
            dataset = tf.data.Dataset.from_tensor_slices(indexes)
            dataset = dataset.batch(PROC_BATCH_SIZE)
            dataset = dataset.map(self.data_function, num_parallel_calls=8)
            dataset = dataset.cache()
            if DO_AUGMENT:
                dataset = dataset.shuffle(PROC_BATCH_BUFFER_SIZE)
            dataset = dataset.prefetch(buffer_size=1)
            self.train_dataset = dataset
    
        def get_test_dataset(self, indexes):
            indexes = list(indexes)
    
            dataset = tf.data.Dataset.from_tensor_slices(indexes)
            dataset = dataset.batch(PROC_BATCH_SIZE)
            dataset = dataset.map(self.data_function_test, num_parallel_calls=8)
            dataset = dataset.cache()
            self.test_dataset = dataset
    
        # def get_evaluate_dataset(self, indexes):
        #     indexes = list(indexes)
        #
        #     dataset = tf.data.Dataset.from_tensor_slices(indexes)
        #     dataset = dataset.map(self.data_function_evaluate, num_parallel_calls=8)
        #     self.eval_dataset = dataset
    
        def get_evaluate_dataset(self, indexes):
            indexes = list(indexes)
    
            dataset = tf.data.Dataset.from_tensor_slices(indexes)
            dataset = dataset.batch(PROC_BATCH_SIZE)
            dataset = dataset.map(self.data_function_evaluate, num_parallel_calls=8)
            dataset = dataset.cache()
            self.eval_dataset = dataset
    
        def setup_pipeline(self, filename_l1b_trn, filename_l1b_tst, filename_l2_trn, filename_l2_tst, trn_idxs=None, tst_idxs=None, seed=None):
            if filename_l1b_trn is not None:
                self.h5f_l1b_trn = h5py.File(filename_l1b_trn, 'r')
            if filename_l1b_tst is not None:
                self.h5f_l1b_tst = h5py.File(filename_l1b_tst, 'r')
            if filename_l2_trn is not None:
                self.h5f_l2_trn = h5py.File(filename_l2_trn, 'r')
            if filename_l2_tst is not None:
                self.h5f_l2_tst = h5py.File(filename_l2_tst, 'r')
    
            if trn_idxs is None:
                # Note: time is same across both L1B and L2 for idxs
                if self.h5f_l1b_trn is not None:
                    h5f = self.h5f_l1b_trn
                else:
                    h5f = self.h5f_l2_trn
                time = h5f['time']
                trn_idxs = np.arange(time.shape[0])
                if seed is not None:
                    np.random.seed(seed)
                np.random.shuffle(trn_idxs)
    
                if self.h5f_l1b_tst is not None:
                    h5f = self.h5f_l1b_tst
                else:
                    h5f = self.h5f_l2_tst
                time = h5f['time']
                tst_idxs = np.arange(time.shape[0])
                if seed is not None:
                    np.random.seed(seed)
                np.random.shuffle(tst_idxs)
    
            self.num_data_samples = trn_idxs.shape[0]
    
            self.get_train_dataset(trn_idxs)
            self.get_test_dataset(tst_idxs)
    
            print('datetime: ', now)
            print('training and test data: ')
            print(filename_l1b_trn)
            print(filename_l1b_tst)
            print(filename_l2_trn)
            print(filename_l2_tst)
            print('---------------------------')
            print('num train samples: ', self.num_data_samples)
            print('BATCH SIZE: ', BATCH_SIZE)
            print('num test samples: ', tst_idxs.shape[0])
            print('setup_pipeline: Done')
    
        def setup_test_pipeline(self, filename_l1b, filename_l2):
    
            if filename_l1b is not None:
                self.h5f_l1b_tst = h5py.File(filename_l1b, 'r')
            if filename_l2 is not None:
                self.h5f_l2_tst = h5py.File(filename_l2, 'r')
    
            if self.h5f_l1b_tst is not None:
                h5f = self.h5f_l1b_tst
            else:
                h5f = self.h5f_l2_tst
    
            time = h5f['time']
            flt_alt = h5f['flight_altitude'][:]
            tst_idxs = np.arange(time.shape[0])
    
            # For testing, make better
            # print('total: ', len(tst_idxs))
            # keep = flt_alt < 3400
            # # keep = np.logical_and(flt_alt > 8000, flt_alt < 15000)
            # tst_idxs = tst_idxs[keep]
    
            self.num_data_samples = len(tst_idxs)
    
            self.get_test_dataset(tst_idxs)
    
            print('num test samples: ', tst_idxs.shape[0])
            print('setup_test_pipeline: Done')
    
        def setup_eval_pipeline(self, data_dct, num_tiles=1):
            self.data_dct = data_dct
            idxs = np.arange(num_tiles)
            self.num_data_samples = idxs.shape[0]
    
            self.get_evaluate_dataset(idxs)
    
        def build_cnn(self, do_drop_out=True, do_batch_norm=True, drop_rate=0.5):
            print('build_cnn')
            # padding = "VALID"
            padding = "SAME"
    
            # activation = tf.nn.relu
            # activation = tf.nn.elu
            activation = tf.nn.leaky_relu
    
            num_filters = len(self.train_params) * 8
    
            input_2d = self.inputs[0]
    
            if NOISE_TRAINING:
                conv = tf.keras.layers.GaussianNoise(stddev=NOISE_STDDEV)(input_2d)
            else:
                conv = input_2d
    
            conv = tf.keras.layers.Conv2D(num_filters, kernel_size=3, strides=1, padding=padding, activation=activation)(conv)
            print(conv.shape)
            skip = conv
    
            conv = tf.keras.layers.Conv2D(num_filters, kernel_size=3, strides=1, padding=padding, activation=activation)(conv)
            conv = tf.keras.layers.MaxPool2D(padding=padding)(conv)
            if do_drop_out:
                conv = tf.keras.layers.Dropout(drop_rate)(conv)
            if do_batch_norm:
                conv = tf.keras.layers.BatchNormalization()(conv)
            print(conv.shape)
    
            skip = tf.keras.layers.Conv2D(num_filters, kernel_size=3, strides=1, padding=padding, activation=None)(skip)
            skip = tf.keras.layers.MaxPool2D(padding=padding)(skip)
            if do_drop_out:
                skip = tf.keras.layers.Dropout(drop_rate)(skip)
            if do_batch_norm:
                skip = tf.keras.layers.BatchNormalization()(skip)
    
            conv = conv + skip
            conv = tf.keras.layers.LeakyReLU()(conv)
            print(conv.shape)
            # -----------------------------------------------------------------------------------------------------------
    
            skip = conv
            num_filters *= 2
            conv = tf.keras.layers.Conv2D(num_filters, kernel_size=3, strides=1, padding=padding, activation=activation)(conv)
            conv = tf.keras.layers.MaxPool2D(padding=padding)(conv)
            if do_drop_out:
                conv = tf.keras.layers.Dropout(drop_rate)(conv)
            if do_batch_norm:
                conv = tf.keras.layers.BatchNormalization()(conv)
            print(conv.shape)
    
            skip = tf.keras.layers.Conv2D(num_filters, kernel_size=3, strides=1, padding=padding, activation=None)(skip)
            skip = tf.keras.layers.MaxPool2D(padding=padding)(skip)
            if do_drop_out:
                skip = tf.keras.layers.Dropout(drop_rate)(skip)
            if do_batch_norm:
                skip = tf.keras.layers.BatchNormalization()(skip)
    
            conv = conv + skip
            conv = tf.keras.layers.LeakyReLU()(conv)
            print(conv.shape)
            # ----------------------------------------------------------------------------------------------------------
    
            skip = conv
            num_filters *= 2
            conv = tf.keras.layers.Conv2D(num_filters, kernel_size=3, strides=1, padding=padding, activation=activation)(conv)
            conv = tf.keras.layers.MaxPool2D(padding=padding)(conv)
            if do_drop_out:
                conv = tf.keras.layers.Dropout(drop_rate)(conv)
            if do_batch_norm:
                conv = tf.keras.layers.BatchNormalization()(conv)
            print(conv.shape)
    
            skip = tf.keras.layers.Conv2D(num_filters, kernel_size=3, strides=1, padding=padding, activation=None)(skip)
            skip = tf.keras.layers.MaxPool2D(padding=padding)(skip)
            if do_drop_out:
                skip = tf.keras.layers.Dropout(drop_rate)(skip)
            if do_batch_norm:
                skip = tf.keras.layers.BatchNormalization()(skip)
    
            conv = conv + skip
            conv = tf.keras.layers.LeakyReLU()(conv)
            # -----------------------------------------------------------------------------------------------------------
    
            skip = conv
            num_filters *= 2
            conv = tf.keras.layers.Conv2D(num_filters, kernel_size=3, strides=1, padding=padding, activation=activation)(conv)
            conv = tf.keras.layers.MaxPool2D(padding=padding)(conv)
            if do_drop_out:
                conv = tf.keras.layers.Dropout(drop_rate)(conv)
            if do_batch_norm:
                conv = tf.keras.layers.BatchNormalization()(conv)
            print(conv.shape)
    
            skip = tf.keras.layers.Conv2D(num_filters, kernel_size=3, strides=1, padding=padding, activation=None)(skip)
            skip = tf.keras.layers.MaxPool2D(padding=padding)(skip)
            if do_drop_out:
                skip = tf.keras.layers.Dropout(drop_rate)(skip)
            if do_batch_norm:
                skip = tf.keras.layers.BatchNormalization()(skip)
    
            conv = conv + skip
            conv = tf.keras.layers.LeakyReLU()(conv)
    
            return conv
    
        def build_fcl(self, input_layer):
            print('build fully connected layer')
            num_filters = input_layer.shape[3]
    
            # activation = tf.nn.relu
            # activation = tf.nn.elu
            activation = tf.nn.leaky_relu
            # padding = "VALID"
            padding = "SAME"
    
            conv = build_residual_block_1x1(input_layer, num_filters, activation, 'Residual_Block_1', padding=padding)
    
            conv = build_residual_block_1x1(conv, num_filters, activation, 'Residual_Block_2', padding=padding)
    
            conv = build_residual_block_1x1(conv, num_filters, activation, 'Residual_Block_3', padding=padding)
    
            conv = build_residual_block_1x1(conv, num_filters, activation, 'Residual_Block_4', padding=padding)
    
            conv = build_residual_block_1x1(conv, num_filters, activation, 'Residual_Block_5', padding=padding)
    
            print(conv.shape)
    
            if NumClasses == 2:
                activation = tf.nn.sigmoid  # For binary
            else:
                activation = tf.nn.softmax  # For multi-class
    
            # Called logits, but these are actually probabilities, see activation
            logits = tf.keras.layers.Conv2D(1, kernel_size=1, strides=1, padding=padding, name='probability', activation=activation)(conv)
    
            print(logits.shape)
    
            self.logits = logits
    
        def build_training(self):
            if NumClasses == 2:
                self.loss = tf.keras.losses.BinaryCrossentropy(from_logits=False)  # for two-class only
            else:
                self.loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False)  # For multi-class
    
            # decayed_learning_rate = learning_rate * decay_rate ^ (global_step / decay_steps)
            initial_learning_rate = 0.001
            decay_rate = 0.95
            steps_per_epoch = int(self.num_data_samples/BATCH_SIZE)  # one epoch
            decay_steps = int(steps_per_epoch)
            print('initial rate, decay rate, steps/epoch, decay steps: ', initial_learning_rate, decay_rate, steps_per_epoch, decay_steps)
    
            self.learningRateSchedule = tf.keras.optimizers.schedules.ExponentialDecay(initial_learning_rate, decay_steps, decay_rate)
    
            optimizer = tf.keras.optimizers.Adam(learning_rate=self.learningRateSchedule)
    
            if TRACK_MOVING_AVERAGE:
                # Not really sure this works properly (from tfa)
                # optimizer = tfa.optimizers.MovingAverage(optimizer)
                self.ema = tf.train.ExponentialMovingAverage(decay=0.9999)
                self.ema.apply(self.model.trainable_variables)
                self.ema_trainable_variables = [self.ema.average(var) for var in self.model.trainable_variables]
    
            self.optimizer = optimizer
            self.initial_learning_rate = initial_learning_rate
    
        def build_evaluation(self):
            self.train_loss = tf.keras.metrics.Mean(name='train_loss')
            self.test_loss = tf.keras.metrics.Mean(name='test_loss')
    
            if NumClasses == 2:
                self.train_accuracy = tf.keras.metrics.BinaryAccuracy(name='train_accuracy')
                self.test_accuracy = tf.keras.metrics.BinaryAccuracy(name='test_accuracy')
                self.test_auc = tf.keras.metrics.AUC(name='test_auc')
                self.test_recall = tf.keras.metrics.Recall(name='test_recall')
                self.test_precision = tf.keras.metrics.Precision(name='test_precision')
                self.test_true_neg = tf.keras.metrics.TrueNegatives(name='test_true_neg')
                self.test_true_pos = tf.keras.metrics.TruePositives(name='test_true_pos')
                self.test_false_neg = tf.keras.metrics.FalseNegatives(name='test_false_neg')
                self.test_false_pos = tf.keras.metrics.FalsePositives(name='test_false_pos')
            else:
                self.train_accuracy = tf.keras.metrics.SparseCategoricalAccuracy(name='train_accuracy')
                self.test_accuracy = tf.keras.metrics.SparseCategoricalAccuracy(name='test_accuracy')
    
        @tf.function
        def train_step(self, mini_batch):
            inputs = [mini_batch[0], mini_batch[1]]
            labels = mini_batch[2]
            with tf.GradientTape() as tape:
                pred = self.model(inputs, training=True)
                pred = tf.reshape(pred, (pred.shape[0], NumLogits))
                loss = self.loss(labels, pred)
                total_loss = loss
                if len(self.model.losses) > 0:
                    reg_loss = tf.math.add_n(self.model.losses)
                    total_loss = loss + reg_loss
            gradients = tape.gradient(total_loss, self.model.trainable_variables)
            self.optimizer.apply_gradients(zip(gradients, self.model.trainable_variables))
    
            if TRACK_MOVING_AVERAGE:
                self.ema.apply(self.model.trainable_variables)
    
            self.train_loss(loss)
            self.train_accuracy(labels, pred)
    
            return loss
    
        @tf.function
        def test_step(self, mini_batch):
            inputs = [mini_batch[0], mini_batch[1]]
            labels = mini_batch[2]
            pred = self.model(inputs, training=False)
            pred = tf.reshape(pred, (pred.shape[0], NumLogits))
            t_loss = self.loss(labels, pred)
    
            self.test_loss(t_loss)
            self.test_accuracy(labels, pred)
            if NumClasses == 2:
                self.test_auc(labels, pred)
                self.test_recall(labels, pred)
                self.test_precision(labels, pred)
                self.test_true_neg(labels, pred)
                self.test_true_pos(labels, pred)
                self.test_false_neg(labels, pred)
                self.test_false_pos(labels, pred)
    
        def predict(self, mini_batch):
            inputs = [mini_batch[0], mini_batch[1]]
            labels = mini_batch[2]
            pred = self.model(inputs, training=False)
            pred = tf.reshape(pred, (pred.shape[0], NumLogits))
            t_loss = self.loss(labels, pred)
    
            self.test_labels.append(labels)
            self.test_preds.append(pred.numpy())
    
            self.test_loss(t_loss)
            self.test_accuracy(labels, pred)
            if NumClasses == 2:
                self.test_auc(labels, pred)
                self.test_recall(labels, pred)
                self.test_precision(labels, pred)
                self.test_true_neg(labels, pred)
                self.test_true_pos(labels, pred)
                self.test_false_neg(labels, pred)
                self.test_false_pos(labels, pred)
    
        def reset_test_metrics(self):
            self.test_loss.reset_states()
            self.test_accuracy.reset_states()
            if NumClasses == 2:
                self.test_auc.reset_states()
                self.test_recall.reset_states()
                self.test_precision.reset_states()
                self.test_true_neg.reset_states()
                self.test_true_pos.reset_states()
                self.test_false_neg.reset_states()
                self.test_false_pos.reset_states()
    
        def get_metrics(self):
            recall = self.test_recall.result()
            precsn = self.test_precision.result()
            f1 = 2 * (precsn * recall) / (precsn + recall)
    
            tn = self.test_true_neg.result()
            tp = self.test_true_pos.result()
            fn = self.test_false_neg.result()
            fp = self.test_false_pos.result()
    
            mcc = ((tp * tn) - (fp * fn)) / np.sqrt((tp + fp) * (tp + fn) * (tn + fp) * (tn + fn))
            return f1, mcc
    
        def do_training(self, ckpt_dir=None):
    
            model_weights = self.model.trainable_variables
            ema_model_weights = None
            if TRACK_MOVING_AVERAGE:
                model_weights = self.model.trainable_variables
                ema_model_weights = self.ema_trainable_variables
    
            if ckpt_dir is None:
                if not os.path.exists(modeldir):
                    os.mkdir(modeldir)
                # ckpt = tf.train.Checkpoint(step=tf.Variable(1), model=self.model, model_weights=model_weights, averaged_weights=ema_model_weights)
                # ckpt_manager = tf.train.CheckpointManager(ckpt, modeldir, max_to_keep=3)
                ckpt = tf.train.Checkpoint(step=tf.Variable(1), model=self.model)
                ckpt_manager = tf.train.CheckpointManager(ckpt, modeldir, max_to_keep=3)
            else:
                ckpt = tf.train.Checkpoint(step=tf.Variable(1), model=self.model)
                ckpt_manager = tf.train.CheckpointManager(ckpt, ckpt_dir, max_to_keep=3)
                ckpt.restore(ckpt_manager.latest_checkpoint)
    
            self.writer_train = tf.summary.create_file_writer(os.path.join(logdir, 'plot_train'))
            self.writer_valid = tf.summary.create_file_writer(os.path.join(logdir, 'plot_valid'))
            self.writer_train_valid_loss = tf.summary.create_file_writer(os.path.join(logdir, 'plot_train_valid_loss'))
    
            step = 0
            total_time = 0
            best_test_loss = np.finfo(dtype=np.float).max
            best_test_acc = 0
            best_test_recall = 0
            best_test_precision = 0
            best_test_auc = 0
            best_test_f1 = 0
            best_test_mcc = 0
    
            if EARLY_STOP:
                es = EarlyStop()
    
            for epoch in range(NUM_EPOCHS):
                self.train_loss.reset_states()
                self.train_accuracy.reset_states()
    
                t0 = datetime.datetime.now().timestamp()
    
                proc_batch_cnt = 0
                n_samples = 0
    
                for data0, data1, label in self.train_dataset:
                    trn_ds = tf.data.Dataset.from_tensor_slices((data0, data1, label))
                    trn_ds = trn_ds.batch(BATCH_SIZE)
                    for mini_batch in trn_ds:
                        if self.learningRateSchedule is not None:
                            loss = self.train_step(mini_batch)
    
                        if (step % 100) == 0:
    
                            with self.writer_train.as_default():
                                tf.summary.scalar('loss_trn', loss.numpy(), step=step)
                                tf.summary.scalar('learning_rate', self.optimizer._decayed_lr('float32').numpy(), step=step)
                                tf.summary.scalar('num_train_steps', step, step=step)
                                tf.summary.scalar('num_epochs', epoch, step=step)
    
                            self.reset_test_metrics()
                            for data0_tst, data1_tst, label_tst in self.test_dataset:
                                tst_ds = tf.data.Dataset.from_tensor_slices((data0_tst, data1_tst, label_tst))
                                tst_ds = tst_ds.batch(BATCH_SIZE)
                                for mini_batch_test in tst_ds:
                                    self.test_step(mini_batch_test)
    
                            if NumClasses == 2:
                                f1, mcc = self.get_metrics()
    
                            with self.writer_valid.as_default():
                                tf.summary.scalar('loss_val', self.test_loss.result(), step=step)
                                tf.summary.scalar('acc_val', self.test_accuracy.result(), step=step)
                                if NumClasses == 2:
                                    tf.summary.scalar('auc_val', self.test_auc.result(), step=step)
                                    tf.summary.scalar('recall_val', self.test_recall.result(), step=step)
                                    tf.summary.scalar('prec_val', self.test_precision.result(), step=step)
                                    tf.summary.scalar('f1_val', f1, step=step)
                                    tf.summary.scalar('mcc_val', mcc, step=step)
                                    tf.summary.scalar('num_train_steps', step, step=step)
                                    tf.summary.scalar('num_epochs', epoch, step=step)
    
                            with self.writer_train_valid_loss.as_default():
                                tf.summary.scalar('loss_trn', loss.numpy(), step=step)
                                tf.summary.scalar('loss_val', self.test_loss.result(), step=step)
    
                            print('****** test loss, acc, lr: ', self.test_loss.result().numpy(), self.test_accuracy.result().numpy(),
                                  self.optimizer._decayed_lr('float32').numpy())
    
                        step += 1
                        print('train loss: ', loss.numpy())
    
                    proc_batch_cnt += 1
                    n_samples += data0.shape[0]
                    print('proc_batch_cnt: ', proc_batch_cnt, n_samples)
    
                t1 = datetime.datetime.now().timestamp()
                print('End of Epoch: ', epoch+1, 'elapsed time: ', (t1-t0))
                total_time += (t1-t0)
    
                self.reset_test_metrics()
                for data0, data1, label in self.test_dataset:
                    ds = tf.data.Dataset.from_tensor_slices((data0, data1, label))
                    ds = ds.batch(BATCH_SIZE)
                    for mini_batch in ds:
                        self.test_step(mini_batch)
    
                if NumClasses == 2:
                    f1, mcc = self.get_metrics()
                    print('loss, acc, recall, precision, auc, f1, mcc: ', self.test_loss.result().numpy(), self.test_accuracy.result().numpy(),
                          self.test_recall.result().numpy(), self.test_precision.result().numpy(), self.test_auc.result().numpy(), f1.numpy(), mcc.numpy())
                else:
                    print('loss, acc: ', self.test_loss.result().numpy(), self.test_accuracy.result().numpy())
                print('------------------------------------------------------')
    
                tst_loss = self.test_loss.result().numpy()
                if tst_loss < best_test_loss:
                    best_test_loss = tst_loss
                    if NumClasses == 2:
                        best_test_acc = self.test_accuracy.result().numpy()
                        best_test_recall = self.test_recall.result().numpy()
                        best_test_precision = self.test_precision.result().numpy()
                        best_test_auc = self.test_auc.result().numpy()
                        best_test_f1 = f1.numpy()
                        best_test_mcc = mcc.numpy()
    
                    ckpt_manager.save()
    
                if self.DISK_CACHE and epoch == 0:
                    f = open(cachepath, 'wb')
                    pickle.dump(self.in_mem_data_cache, f)
                    f.close()
    
                if EARLY_STOP and es.check_stop(tst_loss):
                    break
    
            print('total time: ', total_time)
            self.writer_train.close()
            self.writer_valid.close()
            self.writer_train_valid_loss.close()
    
            if self.h5f_l1b_trn is not None:
                self.h5f_l1b_trn.close()
            if self.h5f_l1b_tst is not None:
                self.h5f_l1b_tst.close()
            if self.h5f_l2_trn is not None:
                self.h5f_l2_trn.close()
            if self.h5f_l2_tst is not None:
                self.h5f_l2_tst.close()
    
            f = open(home_dir+'/best_stats_'+now+'.pkl', 'wb')
            pickle.dump((best_test_loss, best_test_acc, best_test_recall, best_test_precision, best_test_auc, best_test_f1, best_test_mcc), f)
            f.close()
    
        def build_model(self):
            cnn = self.build_cnn()
            print(cnn.shape, self.inputs[1].shape)
            if self.USE_FLIGHT_ALTITUDE:
                cnn = tf.keras.layers.concatenate([cnn, self.inputs[1]])
            self.build_fcl(cnn)
            self.model = tf.keras.Model(self.inputs, self.logits)
    
        def restore(self, ckpt_dir):
    
            if TRACK_MOVING_AVERAGE:
                ckpt = tf.train.Checkpoint(step=tf.Variable(1), model=self.model, model_weights=self.model.trainable_variables, averaged_weights=self.ema_trainable_variables)
            else:
                ckpt = tf.train.Checkpoint(step=tf.Variable(1), model=self.model)
    
            ckpt_manager = tf.train.CheckpointManager(ckpt, ckpt_dir, max_to_keep=3)
    
            ckpt.restore(ckpt_manager.latest_checkpoint)
    
            if TRACK_MOVING_AVERAGE:
                for idx, var in enumerate(self.model.trainable_variables):
                    var.assign(self.ema_trainable_variables[idx])
    
            self.reset_test_metrics()
    
            for data0, data1, label in self.test_dataset:
                ds = tf.data.Dataset.from_tensor_slices((data0, data1, label))
                ds = ds.batch(BATCH_SIZE)
                for mini_batch_test in ds:
                    self.predict(mini_batch_test)
            f1, mcc = self.get_metrics()
            print('loss, acc: ', self.test_loss.result().numpy(), self.test_accuracy.result().numpy(), self.test_recall.result().numpy(),
                  self.test_precision.result().numpy(), self.test_auc.result().numpy(), f1.numpy(), mcc.numpy())
    
            labels = np.concatenate(self.test_labels)
            self.test_labels = labels
    
            preds = np.concatenate(self.test_preds)
            self.test_probs = preds
    
            if NumClasses == 2:
                preds = np.where(preds > 0.5, 1, 0)
            else:
                preds = np.argmax(preds, axis=1)
    
            self.test_preds = preds
    
        def do_evaluate(self, prob_thresh=0.5):
    
            self.reset_test_metrics()
    
            pred_s = []
    
            for data in self.eval_dataset:
                pred = self.model([data], training=False)
                pred_s.append(pred)
    
            preds = np.concatenate(pred_s)
            preds = preds[:,0]
            self.test_probs = preds
    
            if NumClasses == 2:
                preds = np.where(preds > prob_thresh, 1, 0)
            else:
                preds = np.argmax(preds, axis=1)
            self.test_preds = preds
    
        def run(self, filename_l1b_trn, filename_l1b_tst, filename_l2_trn, filename_l2_tst):
            self.setup_pipeline(filename_l1b_trn, filename_l1b_tst, filename_l2_trn, filename_l2_tst)
            self.build_model()
            self.build_training()
            self.build_evaluation()
            self.do_training()
    
        def run_restore(self, filename_l1b, filename_l2, ckpt_dir):
            self.setup_test_pipeline(filename_l1b, filename_l2)
            self.build_model()
            self.build_training()
            self.build_evaluation()
            self.restore(ckpt_dir)
    
            if self.h5f_l1b_tst is not None:
                self.h5f_l1b_tst.close()
            if self.h5f_l2_tst is not None:
                self.h5f_l2_tst.close()
    
        def run_evaluate(self, filename, ckpt_dir):
            data_dct, ll, cc = make_for_full_domain_predict(filename, name_list=self.train_params)
            self.setup_eval_pipeline(data_dct, len(ll))
            self.build_model()
            self.build_training()
            self.build_evaluation()
            self.do_evaluate(ckpt_dir)
    
    
    def run_restore_static(filename_l1b, filename_l2, ckpt_dir_s_path, day_night='DAY', l1b_or_l2='both',
                           satellite='GOES16', use_flight_altitude=False, out_file=None):
        ckpt_dir_s = os.listdir(ckpt_dir_s_path)
        cm_s = []
        prob_s = []
        labels = None
    
        for ckpt in ckpt_dir_s:
            ckpt_dir = ckpt_dir_s_path + ckpt
            if not os.path.isdir(ckpt_dir):
                continue
            nn = IcingIntensityFCN(day_night=day_night, l1b_or_l2=l1b_or_l2, satellite=satellite, use_flight_altitude=use_flight_altitude)
            nn.run_restore(filename_l1b, filename_l2, ckpt_dir)
            cm_s.append(tf.math.confusion_matrix(nn.test_labels.flatten(), nn.test_preds.flatten()))
            prob_s.append(nn.test_probs.flatten())
            if labels is None:  # These should be the same
                labels = nn.test_labels.flatten()
    
        num = len(cm_s)
        cm_avg = cm_s[0]
        prob_avg = prob_s[0]
        for k in range(num-1):
            cm_avg += cm_s[k+1]
            prob_avg += prob_s[k+1]
        cm_avg /= num
        prob_avg /= num
    
        if out_file is not None:
            np.save(out_file, [labels, prob_avg, cm_avg])
        else:
            return labels, prob_avg, cm_avg
    
    
    def run_evaluate_static_avg(data_dct, ll, cc, ckpt_dir_s_path, day_night='DAY', flight_level=4,
                            use_flight_altitude=False, prob_thresh=0.5,
                            satellite='GOES16', domain='FD'):
        num_elems = len(cc)
        num_lines = len(ll)
        cc = np.array(cc)
        ll = np.array(ll)
    
        ckpt_dir_s = os.listdir(ckpt_dir_s_path)
    
        nav = get_navigation(satellite, domain)
    
        prob_s = []
        for ckpt in ckpt_dir_s:
            ckpt_dir = ckpt_dir_s_path + ckpt
            if not os.path.isdir(ckpt_dir):
                continue
            nn = IcingIntensityFCN(day_night=day_night, use_flight_altitude=use_flight_altitude)
            nn.flight_level = flight_level
            nn.setup_eval_pipeline(data_dct, num_lines * num_elems)
            nn.build_model()
            nn.build_training()
            nn.build_evaluation()
            nn.do_evaluate(ckpt_dir)
            prob_s.append(nn.test_probs)
    
        num = len(prob_s)
        prob_avg = prob_s[0]
        for k in range(num-1):
            prob_avg += prob_s[k+1]
        prob_avg /= num
        probs = prob_avg
    
        if NumClasses == 2:
            preds = np.where(probs > prob_thresh, 1, 0)
        else:
            preds = np.argmax(probs, axis=1)
        preds_2d = preds.reshape((num_lines, num_elems))
    
        ll, cc = np.meshgrid(ll, cc, indexing='ij')
        cc = cc.flatten()
        ll = ll.flatten()
    
        ice_mask = preds == 1
        ice_cc = cc[ice_mask]
        ice_ll = ll[ice_mask]
    
        ice_lons, ice_lats = nav.lc_to_earth(ice_cc, ice_ll)
    
        return ice_lons, ice_lats, preds_2d
    
    
    def run_evaluate_static(data_dct, num_tiles, ckpt_dir_s_path, day_night='DAY', l1b_or_l2='both', satellite='GOES16',
                            prob_thresh=0.5, flight_levels=[0, 1, 2, 3, 4], use_flight_altitude=False):
    
        ckpt_dir_s = os.listdir(ckpt_dir_s_path)
        ckpt_dir = ckpt_dir_s_path + ckpt_dir_s[0]
    
        if not use_flight_altitude:
            flight_levels = [0]
    
        probs_dct = {flvl: None for flvl in flight_levels}
        preds_dct = {flvl: None for flvl in flight_levels}
    
        nn = IcingIntensityFCN(day_night=day_night, l1b_or_l2=l1b_or_l2, satellite=satellite, use_flight_altitude=use_flight_altitude)
        nn.num_data_samples = num_tiles
        nn.build_model()
        nn.build_training()
        nn.build_evaluation()
    
        ckpt = tf.train.Checkpoint(step=tf.Variable(1), model=nn.model)
        ckpt_manager = tf.train.CheckpointManager(ckpt, ckpt_dir, max_to_keep=3)
        ckpt.restore(ckpt_manager.latest_checkpoint)
    
        for flvl in flight_levels:
            nn.flight_level = flvl
            nn.setup_eval_pipeline(data_dct, num_tiles)
            nn.do_evaluate(prob_thresh=prob_thresh)
    
            probs_dct[flvl] = nn.test_probs.flatten()
            preds_dct[flvl] = nn.test_preds.flatten()
    
        return preds_dct, probs_dct
    
    
    if __name__ == "__main__":
        nn = IcingIntensityFCN()
        nn.run('matchup_filename')