split_nc4.py 5.11 KiB
import netCDF4 as nc
import numpy as np
import xarray as xr
def split_dataset(input_file, output_pattern, dim_name, chunk_size):
# Load the input dataset
ds = nc.Dataset(input_file, 'r', format='NETCDF4')
outer_dim_size = len(ds.dimensions[dim_name])
# Calculate the number of chunks
num_chunks = int(np.ceil(outer_dim_size / chunk_size))
# Loop through each chunk
for i in range(num_chunks-1):
# Determine the start and end indices of this chunk
start = i * chunk_size
end = min((i + 1) * chunk_size, outer_dim_size)
# Slicing along our dimension of interest
slice_indices = slice(start, end)
# Create a new output file for this chunk
output_file = output_pattern.format(i)
rootgrp = nc.Dataset(output_file, 'w', format='NETCDF4')
# Copy dimensions
for name, dim in ds.dimensions.items():
# Adjust the dimension size for the split dimension
if name == dim_name:
dim_size = len(range(start, end))
else:
dim_size = len(dim) if not dim.isunlimited() else None
rootgrp.createDimension(name, dim_size)
# Copy variables
for name, var in ds.variables.items():
var.set_auto_maskandscale(False)
outVar = rootgrp.createVariable(name, var.datatype, var.dimensions)
outVar.set_auto_maskandscale(False)
# Copy variable attributes
if name != 'gs_1c_spect': # The original file has bad metadata for this, and possibly other fields
outVar.setncatts({k: var.getncattr(k) for k in var.ncattrs()})
# Divide variable data for the split dimension, keep others as is
if dim_name in var.dimensions:
outVar[:,] = var[slice_indices,]
else:
outVar[:,] = var[:,]
# Copy global attributes
rootgrp.setncatts({k: ds.getncattr(k) for k in ds.ncattrs()})
rootgrp.close()
ds.close()
def concatenate_nc4_files(nc_files, output_file, concat_dim_name='time'):
datasets = [xr.open_dataset(nc_file) for nc_file in nc_files]
combined = xr.concat(datasets, dim=concat_dim_name)
combined.to_netcdf(output_file)
print(f"All files combined and saved to {output_file}")
# Call the function
# split_dataset('input.nc', 'output_{}.nc', 'time', 10)
def aggregate_output_files(nc_files, output_file, track_dim_name='nj', xtrack_dim_name='ni'):
input_datasets = [nc.Dataset(nc_file, 'r', format='NETCDF4') for nc_file in nc_files]
output_rootgrp = nc.Dataset(output_file, 'w', format='NETCDF4')
# calculate new track_dim length
track_dim_len = 0
xtrack_dim_len = None
for ds in input_datasets:
for name, dim in ds.dimensions.items():
if name == track_dim_name:
track_dim_len += len(dim)
elif name == xtrack_dim_name and xtrack_dim_len is None:
xtrack_dim_len = len(dim)
# create the dimensions for the new aggregation target file
output_rootgrp.createDimension('time', 1)
output_rootgrp.createDimension(track_dim_name, track_dim_len)
output_rootgrp.createDimension(xtrack_dim_name, xtrack_dim_len)
# use the time value from the first file for aggregated time
var = input_datasets[0].variables['time']
time_var = output_rootgrp.createVariable('time', var.datatype, 'time')
time_var.setncatts({k: var.getncattr(k) for k in var.ncattrs()})
# assign the value of var to time_var
time_var[:] = var[:]
# create lon, lat variables
var = input_datasets[0].variables['lon']
lon_var = output_rootgrp.createVariable('lon', var.datatype, ['nj', 'ni'])
lon_var.set_auto_maskandscale(False)
lon_var.setncatts({k: var.getncattr(k) for k in var.ncattrs()})
var = input_datasets[0].variables['lat']
lat_var = output_rootgrp.createVariable('lat', var.datatype, ['nj', 'ni'])
lat_var.set_auto_maskandscale(False)
lat_var.setncatts({k: var.getncattr(k) for k in var.ncattrs()})
# create the other variables
for name, var in input_datasets[0].variables.items():
if name not in ['time', 'lon', 'lat']:
out_var = output_rootgrp.createVariable(name, var.datatype, ['time', track_dim_name, xtrack_dim_name])
out_var.set_auto_maskandscale(False)
out_var.setncatts({k: var.getncattr(k) for k in var.ncattrs()})
# copy from input files to the single output file
start_idx = 0
for ds in input_datasets:
track_len = len(ds.dimensions[track_dim_name])
lon_var[start_idx:start_idx + track_len, :] = ds.variables['lon'][:, :]
lat_var[start_idx:start_idx + track_len, :] = ds.variables['lat'][:, :]
start_idx += track_len
start_idx = 0
for ds in input_datasets:
track_len = len(ds.dimensions[track_dim_name])
for name, var in ds.variables.items():
if name not in ['time', 'lon', 'lat']:
out_var = output_rootgrp.variables[name]
out_var[0, start_idx:start_idx + track_len, :] = var[0, :, :]
start_idx += track_len
output_rootgrp.close()
return