Skip to content
Snippets Groups Projects
srcnn_l1b_l2.py 29.98 KiB
import glob
import tensorflow as tf
from util.setup import logdir, modeldir, cachepath, now, ancillary_path
from util.util import EarlyStop, normalize, denormalize, resample, resample_2d_linear, resample_one,\
    resample_2d_linear_one, get_grid_values_all, add_noise
import os, datetime
import numpy as np
import pickle
import h5py

# L1B M/I-bands: /apollo/cloud/scratch/cwhite/VIIRS_HRES/2019/2019_01_01/
# CLAVRx: /apollo/cloud/scratch/Satellite_Output/VIIRS_HRES/2019/2019_01_01/
# /apollo/cloud/scratch/Satellite_Output/andi/NEW/VIIRS_HRES/2019

LOG_DEVICE_PLACEMENT = False

PROC_BATCH_SIZE = 4
PROC_BATCH_BUFFER_SIZE = 50000

NumClasses = 2
if NumClasses == 2:
    NumLogits = 1
else:
    NumLogits = NumClasses

BATCH_SIZE = 128
NUM_EPOCHS = 60

TRACK_MOVING_AVERAGE = False
EARLY_STOP = True

NOISE_TRAINING = True
NOISE_STDDEV = 0.001
DO_AUGMENT = True

DO_ZERO_OUT = False

# setup scaling parameters dictionary
mean_std_dct = {}
mean_std_file = ancillary_path+'mean_std_lo_hi_l2.pkl'
f = open(mean_std_file, 'rb')
mean_std_dct_l2 = pickle.load(f)
f.close()

mean_std_file = ancillary_path+'mean_std_lo_hi_l1b.pkl'
f = open(mean_std_file, 'rb')
mean_std_dct_l1b = pickle.load(f)
f.close()

mean_std_dct.update(mean_std_dct_l1b)
mean_std_dct.update(mean_std_dct_l2)

# label_param = 'cloud_fraction'
# label_param = 'cld_opd_dcomp'
label_param = 'cloud_probability'

params = ['temp_11_0um_nom', 'temp_12_0um_nom', 'refl_0_65um_nom', label_param]
data_params = ['temp_11_0um_nom']

label_idx = params.index(label_param)

print('data_params: ', data_params)
print('label_param: ', label_param)

# Kernel size: 3, target size: (128, 128)
slc_x = slice(2, 132)
slc_y = slice(2, 132)
slc_x_2 = slice(1, 134, 2)
slc_y_2 = slice(1, 134, 2)
x_128 = slice(3, 131)
y_128 = slice(3, 131)
t = np.arange(1, 66, 0.5)
s = np.arange(1, 66, 0.5)
x_2 = np.arange(67)
y_2 = np.arange(67)
# ----------------------------------------

# Kernel size: 5, target_size: (128, 128)
# slc_x = slice(3, 135)
# slc_y = slice(3, 135)
# slc_x_2 = slice(2, 137, 2)
# slc_y_2 = slice(2, 137, 2)
# x_128 = slice(5, 133)
# y_128 = slice(5, 133)
# t = np.arange(1, 67, 0.5)
# s = np.arange(1, 67, 0.5)
# x_2 = np.arange(68)
# y_2 = np.arange(68)
# ----------------------------------------


def build_residual_conv2d_block(conv, num_filters, block_name, activation=tf.nn.relu, padding='SAME',
                                kernel_initializer='he_uniform', scale=None, kernel_size=3,
                                do_drop_out=True, drop_rate=0.5, do_batch_norm=True):

    with tf.name_scope(block_name):
        skip = tf.keras.layers.Conv2D(num_filters, kernel_size=kernel_size, padding=padding, kernel_initializer=kernel_initializer, activation=activation)(conv)
        skip = tf.keras.layers.Conv2D(num_filters, kernel_size=kernel_size, padding=padding, activation=None)(skip)

        if scale is not None:
            skip = tf.keras.layers.Lambda(lambda x: x * scale)(skip)

        if do_drop_out:
            skip = tf.keras.layers.Dropout(drop_rate)(skip)

        if do_batch_norm:
            skip = tf.keras.layers.BatchNormalization()(skip)

        conv = conv + skip
        print(block_name+':', conv.shape)

    return conv


class SRCNN:
    
    def __init__(self):

        self.train_data = None
        self.train_label = None
        self.test_data = None
        self.test_label = None
        self.test_data_denorm = None
        
        self.train_dataset = None
        self.inner_train_dataset = None
        self.test_dataset = None
        self.eval_dataset = None
        self.X_img = None
        self.X_prof = None
        self.X_u = None
        self.X_v = None
        self.X_sfc = None
        self.inputs = []
        self.y = None
        self.handle = None
        self.inner_handle = None
        self.in_mem_batch = None

        self.h5f_l1b_trn = None
        self.h5f_l1b_tst = None
        self.h5f_l2_trn = None
        self.h5f_l2_tst = None

        self.logits = None

        self.predict_data = None
        self.predict_dataset = None
        self.mean_list = None
        self.std_list = None
        
        self.training_op = None
        self.correct = None
        self.accuracy = None
        self.loss = None
        self.pred_class = None
        self.variable_averages = None

        self.global_step = None

        self.writer_train = None
        self.writer_valid = None
        self.writer_train_valid_loss = None

        self.OUT_OF_RANGE = False

        self.abi = None
        self.temp = None
        self.wv = None
        self.lbfp = None
        self.sfc = None

        self.in_mem_data_cache = {}
        self.in_mem_data_cache_test = {}

        self.model = None
        self.optimizer = None
        self.ema = None
        self.train_loss = None
        self.train_accuracy = None
        self.test_loss = None
        self.test_accuracy = None
        self.test_auc = None
        self.test_recall = None
        self.test_precision = None
        self.test_confusion_matrix = None
        self.test_true_pos = None
        self.test_true_neg = None
        self.test_false_pos = None
        self.test_false_neg = None

        self.test_labels = []
        self.test_preds = []
        self.test_probs = None

        self.learningRateSchedule = None
        self.num_data_samples = None
        self.initial_learning_rate = None

        self.data_dct = None
        self.train_data_files = None
        self.train_label_files = None
        self.test_data_files = None
        self.test_label_files = None

        self.train_data_nda = None
        self.train_label_nda = None
        self.test_data_nda = None
        self.test_label_nda = None

        self.n_chans = len(data_params) + 2

        self.X_img = tf.keras.Input(shape=(None, None, self.n_chans))
        # self.X_img = tf.keras.Input(shape=(36, 36, self.n_chans))
        # self.X_img = tf.keras.Input(shape=(34, 34, self.n_chans))
        # self.X_img = tf.keras.Input(shape=(66, 66, self.n_chans))

        self.inputs.append(self.X_img)

        tf.debugging.set_log_device_placement(LOG_DEVICE_PLACEMENT)

    def get_in_mem_data_batch(self, idxs, is_training):
        if is_training:
            files = self.train_data_files
        else:
            files = self.test_data_files

        data_s = []
        for k in idxs:
            f = files[k]
            try:
                nda = np.load(f)
            except Exception:
                print(f)
                continue
            data_s.append(nda)
        input_data = np.concatenate(data_s)

        DO_ADD_NOISE = False
        if is_training and NOISE_TRAINING:
            DO_ADD_NOISE = True

        data_norm = []
        for param in data_params:
            idx = params.index(param)
            # tmp = input_data[:, idx, slc_y_2, slc_x_2]
            tmp = input_data[:, idx, slc_y, slc_x]
            tmp = normalize(tmp, param, mean_std_dct)
            if DO_ADD_NOISE:
                tmp = add_noise(tmp, noise_scale=NOISE_STDDEV)
            # tmp = resample_2d_linear(x_2, y_2, tmp, t, s)
            data_norm.append(tmp)
        # --------------------------
        param = 'refl_0_65um_nom'
        idx = params.index(param)
        # tmp = input_data[:, idx, slc_y_2, slc_x_2]
        tmp = input_data[:, idx, slc_y, slc_x]
        tmp = normalize(tmp, param, mean_std_dct)
        if DO_ADD_NOISE:
            tmp = add_noise(tmp, noise_scale=NOISE_STDDEV)
        # tmp = resample_2d_linear(x_2, y_2, tmp, t, s)
        data_norm.append(tmp)
        # --------
        tmp = input_data[:, label_idx, slc_y_2, slc_x_2]
        if label_param != 'cloud_probability':
            tmp = normalize(tmp, label_param, mean_std_dct)
            if DO_ADD_NOISE:
                tmp = add_noise(tmp, noise_scale=NOISE_STDDEV)
        else:
            if DO_ADD_NOISE:
                tmp = add_noise(tmp, noise_scale=NOISE_STDDEV)
            tmp = np.where(np.isnan(tmp), 0, tmp)
            tmp = np.where(tmp < 0.0, 0.0, tmp)
            tmp = np.where(tmp > 1.0, 1.0, tmp)
        tmp = resample_2d_linear(x_2, y_2, tmp, t, s)
        data_norm.append(tmp)
        # ---------
        data = np.stack(data_norm, axis=3)
        data = data.astype(np.float32)
        # -----------------------------------------------------
        # -----------------------------------------------------
        label = input_data[:, label_idx, y_128, x_128]
        if label_param != 'cloud_probability':
            label = normalize(label, label_param, mean_std_dct)
        else:
            label = np.where(np.isnan(label), 0, label)
        label = np.expand_dims(label, axis=3)

        data = data.astype(np.float32)
        label = label.astype(np.float32)

        if is_training and DO_AUGMENT:
            data_ud = np.flip(data, axis=1)
            label_ud = np.flip(label, axis=1)

            data_lr = np.flip(data, axis=2)
            label_lr = np.flip(label, axis=2)

            data = np.concatenate([data, data_ud, data_lr])
            label = np.concatenate([label, label_ud, label_lr])

        return data, label

    def get_in_mem_data_batch_train(self, idxs):
        return self.get_in_mem_data_batch(idxs, True)

    def get_in_mem_data_batch_test(self, idxs):
        return self.get_in_mem_data_batch(idxs, False)

    def get_in_mem_data_batch_eval(self, idxs):
        data = []
        for param in self.train_params:
            nda = self.data_dct[param]
            nda = normalize(nda, param, mean_std_dct)
            data.append(nda)
        data = np.stack(data)
        data = data.astype(np.float32)
        data = np.transpose(data, axes=(1, 2, 0))
        data = np.expand_dims(data, axis=0)

        return data

    @tf.function(input_signature=[tf.TensorSpec(None, tf.int32)])
    def data_function(self, indexes):
        out = tf.numpy_function(self.get_in_mem_data_batch_train, [indexes], [tf.float32, tf.float32])
        return out

    @tf.function(input_signature=[tf.TensorSpec(None, tf.int32)])
    def data_function_test(self, indexes):
        out = tf.numpy_function(self.get_in_mem_data_batch_test, [indexes], [tf.float32, tf.float32])
        return out

    @tf.function(input_signature=[tf.TensorSpec(None, tf.int32)])
    def data_function_evaluate(self, indexes):
        # TODO: modify for user specified altitude
        out = tf.numpy_function(self.get_in_mem_data_batch_eval, [indexes], [tf.float32])
        return out

    def get_train_dataset(self, indexes):
        indexes = list(indexes)

        dataset = tf.data.Dataset.from_tensor_slices(indexes)
        dataset = dataset.batch(PROC_BATCH_SIZE)
        dataset = dataset.map(self.data_function, num_parallel_calls=8)
        dataset = dataset.cache()
        if DO_AUGMENT:
            dataset = dataset.shuffle(PROC_BATCH_BUFFER_SIZE)
        dataset = dataset.prefetch(buffer_size=1)
        self.train_dataset = dataset

    def get_test_dataset(self, indexes):
        indexes = list(indexes)

        dataset = tf.data.Dataset.from_tensor_slices(indexes)
        dataset = dataset.batch(PROC_BATCH_SIZE)
        dataset = dataset.map(self.data_function_test, num_parallel_calls=8)
        dataset = dataset.cache()
        self.test_dataset = dataset

    def get_evaluate_dataset(self, indexes):
        indexes = list(indexes)

        dataset = tf.data.Dataset.from_tensor_slices(indexes)
        dataset = dataset.map(self.data_function_evaluate, num_parallel_calls=8)
        self.eval_dataset = dataset

    def setup_pipeline(self, train_data_files, test_data_files, num_train_samples):

        self.train_data_files = train_data_files
        self.test_data_files = test_data_files

        trn_idxs = np.arange(len(train_data_files))
        np.random.shuffle(trn_idxs)
        tst_idxs = np.arange(len(test_data_files))

        self.get_train_dataset(trn_idxs)
        self.get_test_dataset(tst_idxs)

        self.num_data_samples = num_train_samples  # approximately

        print('datetime: ', now)
        print('training and test data: ')
        print('---------------------------')
        print('num train samples: ', self.num_data_samples)
        print('BATCH SIZE: ', BATCH_SIZE)
        print('num test samples: ', tst_idxs.shape[0])
        print('setup_pipeline: Done')

    def setup_test_pipeline(self, test_data_files):
        self.test_data_files = test_data_files
        tst_idxs = np.arange(len(test_data_files))
        self.get_test_dataset(tst_idxs)
        print('setup_test_pipeline: Done')

    def setup_eval_pipeline(self, filename):
        idxs = [0]
        self.num_data_samples = idxs.shape[0]

        self.get_evaluate_dataset(idxs)

    def build_srcnn(self, do_drop_out=False, do_batch_norm=False, drop_rate=0.5, factor=2):
        print('build_cnn')
        padding = "SAME"

        # activation = tf.nn.relu
        # activation = tf.nn.elu
        activation = tf.nn.relu
        momentum = 0.99

        num_filters = 64

        input_2d = self.inputs[0]
        print('input: ', input_2d.shape)

        conv = conv_b = tf.keras.layers.Conv2D(num_filters, kernel_size=3, kernel_initializer='he_uniform', activation=activation, padding='VALID')(input_2d)
        print(conv.shape)

        # if NOISE_TRAINING:
        #     conv = conv_b = tf.keras.layers.GaussianNoise(stddev=NOISE_STDDEV)(conv)

        scale = 0.2

        conv_b = build_residual_conv2d_block(conv_b, num_filters, 'Residual_Block_1', kernel_size=3, scale=scale)

        conv_b = build_residual_conv2d_block(conv_b, num_filters, 'Residual_Block_2', kernel_size=3, scale=scale)

        #conv_b = build_residual_conv2d_block(conv_b, num_filters, 'Residual_Block_3', kernel_size=3, scale=scale)

        #conv_b = build_residual_conv2d_block(conv_b, num_filters, 'Residual_Block_4', kernel_size=3, scale=scale)

        #conv_b = build_residual_conv2d_block(conv_b, num_filters, 'Residual_Block_5', kernel_size=3, scale=scale)

        conv_b = tf.keras.layers.Conv2D(num_filters, kernel_size=3, strides=1, activation=activation, kernel_initializer='he_uniform', padding=padding)(conv_b)

        conv = conv + conv_b
        print(conv.shape)

        # This is effectively a Dense layer
        self.logits = tf.keras.layers.Conv2D(1, kernel_size=1, strides=1, padding=padding, name='regression')(conv)

        print(self.logits.shape)

    def build_training(self):
        # if NumClasses == 2:
        #     self.loss = tf.keras.losses.BinaryCrossentropy(from_logits=False)  # for two-class only
        # else:
        #     self.loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False)  # For multi-class
        # self.loss = tf.keras.losses.MeanAbsoluteError()  # Regression
        self.loss = tf.keras.losses.MeanSquaredError()  # Regression

        # decayed_learning_rate = learning_rate * decay_rate ^ (global_step / decay_steps)
        initial_learning_rate = 0.002
        decay_rate = 0.95
        steps_per_epoch = int(self.num_data_samples/BATCH_SIZE)  # one epoch
        decay_steps = int(steps_per_epoch)
        print('initial rate, decay rate, steps/epoch, decay steps: ', initial_learning_rate, decay_rate, steps_per_epoch, decay_steps)

        self.learningRateSchedule = tf.keras.optimizers.schedules.ExponentialDecay(initial_learning_rate, decay_steps, decay_rate)

        optimizer = tf.keras.optimizers.Adam(learning_rate=self.learningRateSchedule)

        if TRACK_MOVING_AVERAGE:
            # Not really sure this works properly (from tfa)
            # optimizer = tfa.optimizers.MovingAverage(optimizer)
            self.ema = tf.train.ExponentialMovingAverage(decay=0.9999)

        self.optimizer = optimizer
        self.initial_learning_rate = initial_learning_rate

    def build_evaluation(self):
        self.train_accuracy = tf.keras.metrics.MeanAbsoluteError(name='train_accuracy')
        self.test_accuracy = tf.keras.metrics.MeanAbsoluteError(name='test_accuracy')
        self.train_loss = tf.keras.metrics.Mean(name='train_loss')
        self.test_loss = tf.keras.metrics.Mean(name='test_loss')

    @tf.function
    def train_step(self, mini_batch):
        inputs = [mini_batch[0]]
        labels = mini_batch[1]
        with tf.GradientTape() as tape:
            pred = self.model(inputs, training=True)
            loss = self.loss(labels, pred)
            total_loss = loss
            if len(self.model.losses) > 0:
                reg_loss = tf.math.add_n(self.model.losses)
                total_loss = loss + reg_loss
        gradients = tape.gradient(total_loss, self.model.trainable_variables)
        self.optimizer.apply_gradients(zip(gradients, self.model.trainable_variables))
        if TRACK_MOVING_AVERAGE:
            self.ema.apply(self.model.trainable_variables)

        self.train_loss(loss)
        self.train_accuracy(labels, pred)

        return loss

    @tf.function
    def test_step(self, mini_batch):
        inputs = [mini_batch[0]]
        labels = mini_batch[1]
        pred = self.model(inputs, training=False)
        t_loss = self.loss(labels, pred)

        self.test_loss(t_loss)
        self.test_accuracy(labels, pred)

    def predict(self, mini_batch):
        inputs = [mini_batch[0]]
        labels = mini_batch[1]
        pred = self.model(inputs, training=False)
        t_loss = self.loss(labels, pred)

        self.test_labels.append(labels)
        self.test_preds.append(pred.numpy())

        self.test_loss(t_loss)
        self.test_accuracy(labels, pred)

    def reset_test_metrics(self):
        self.test_loss.reset_states()
        self.test_accuracy.reset_states()

    def get_metrics(self):
        recall = self.test_recall.result()
        precsn = self.test_precision.result()
        f1 = 2 * (precsn * recall) / (precsn + recall)

        tn = self.test_true_neg.result()
        tp = self.test_true_pos.result()
        fn = self.test_false_neg.result()
        fp = self.test_false_pos.result()

        mcc = ((tp * tn) - (fp * fn)) / np.sqrt((tp + fp) * (tp + fn) * (tn + fp) * (tn + fn))
        return f1, mcc

    def do_training(self, ckpt_dir=None):

        if ckpt_dir is None:
            if not os.path.exists(modeldir):
                os.mkdir(modeldir)
            ckpt = tf.train.Checkpoint(step=tf.Variable(1), model=self.model)
            ckpt_manager = tf.train.CheckpointManager(ckpt, modeldir, max_to_keep=3)
        else:
            ckpt = tf.train.Checkpoint(step=tf.Variable(1), model=self.model)
            ckpt_manager = tf.train.CheckpointManager(ckpt, ckpt_dir, max_to_keep=3)
            ckpt.restore(ckpt_manager.latest_checkpoint)

        self.writer_train = tf.summary.create_file_writer(os.path.join(logdir, 'plot_train'))
        self.writer_valid = tf.summary.create_file_writer(os.path.join(logdir, 'plot_valid'))
        self.writer_train_valid_loss = tf.summary.create_file_writer(os.path.join(logdir, 'plot_train_valid_loss'))

        step = 0
        total_time = 0
        best_test_loss = np.finfo(dtype=np.float).max

        if EARLY_STOP:
            es = EarlyStop()

        for epoch in range(NUM_EPOCHS):
            self.train_loss.reset_states()
            self.train_accuracy.reset_states()

            t0 = datetime.datetime.now().timestamp()

            proc_batch_cnt = 0
            n_samples = 0

            for data, label in self.train_dataset:
                trn_ds = tf.data.Dataset.from_tensor_slices((data, label))
                trn_ds = trn_ds.batch(BATCH_SIZE)
                for mini_batch in trn_ds:
                    if self.learningRateSchedule is not None:
                        loss = self.train_step(mini_batch)

                    if (step % 100) == 0:

                        with self.writer_train.as_default():
                            tf.summary.scalar('loss_trn', loss.numpy(), step=step)
                            tf.summary.scalar('learning_rate', self.optimizer._decayed_lr('float32').numpy(), step=step)
                            tf.summary.scalar('num_train_steps', step, step=step)
                            tf.summary.scalar('num_epochs', epoch, step=step)

                        self.reset_test_metrics()
                        for data_tst, label_tst in self.test_dataset:
                            tst_ds = tf.data.Dataset.from_tensor_slices((data_tst, label_tst))
                            tst_ds = tst_ds.batch(BATCH_SIZE)
                            for mini_batch_test in tst_ds:
                                self.test_step(mini_batch_test)

                        with self.writer_valid.as_default():
                            tf.summary.scalar('loss_val', self.test_loss.result(), step=step)
                            tf.summary.scalar('acc_val', self.test_accuracy.result(), step=step)

                        with self.writer_train_valid_loss.as_default():
                            tf.summary.scalar('loss_trn', loss.numpy(), step=step)
                            tf.summary.scalar('loss_val', self.test_loss.result(), step=step)

                        print('****** test loss, acc, lr: ', self.test_loss.result().numpy(), self.test_accuracy.result().numpy(),
                              self.optimizer._decayed_lr('float32').numpy())

                    step += 1
                    print('train loss: ', loss.numpy())

                proc_batch_cnt += 1
                n_samples += data.shape[0]
                print('proc_batch_cnt: ', proc_batch_cnt, n_samples)

            t1 = datetime.datetime.now().timestamp()
            print('End of Epoch: ', epoch+1, 'elapsed time: ', (t1-t0))
            total_time += (t1-t0)

            self.reset_test_metrics()
            for data, label in self.test_dataset:
                ds = tf.data.Dataset.from_tensor_slices((data, label))
                ds = ds.batch(BATCH_SIZE)
                for mini_batch in ds:
                    self.test_step(mini_batch)

            print('loss, acc: ', self.test_loss.result().numpy(), self.test_accuracy.result().numpy())
            print('------------------------------------------------------')

            tst_loss = self.test_loss.result().numpy()
            if tst_loss < best_test_loss:
                best_test_loss = tst_loss
                ckpt_manager.save()

            if EARLY_STOP and es.check_stop(tst_loss):
                break

        print('total time: ', total_time)
        self.writer_train.close()
        self.writer_valid.close()
        self.writer_train_valid_loss.close()

        # f = open(home_dir+'/best_stats_'+now+'.pkl', 'wb')
        # pickle.dump((best_test_loss, best_test_acc, best_test_recall, best_test_precision, best_test_auc, best_test_f1, best_test_mcc), f)
        # f.close()

    def build_model(self):
        self.build_srcnn()
        self.model = tf.keras.Model(self.inputs, self.logits)

    def restore(self, ckpt_dir):

        ckpt = tf.train.Checkpoint(step=tf.Variable(1), model=self.model)
        ckpt_manager = tf.train.CheckpointManager(ckpt, ckpt_dir, max_to_keep=3)
        ckpt.restore(ckpt_manager.latest_checkpoint)

        self.reset_test_metrics()

        for data, label in self.test_dataset:
            ds = tf.data.Dataset.from_tensor_slices((data, label))
            ds = ds.batch(BATCH_SIZE)
            for mini_batch_test in ds:
                self.predict(mini_batch_test)

        print('loss, acc: ', self.test_loss.result().numpy(), self.test_accuracy.result().numpy())

    def do_evaluate(self, data, ckpt_dir):

        ckpt = tf.train.Checkpoint(step=tf.Variable(1), model=self.model)
        ckpt_manager = tf.train.CheckpointManager(ckpt, ckpt_dir, max_to_keep=3)

        ckpt.restore(ckpt_manager.latest_checkpoint)

        self.reset_test_metrics()

        pred = self.model([data], training=False)
        self.test_probs = pred
        pred = pred.numpy()

        return pred

    def run(self, directory, ckpt_dir=None, num_data_samples=50000):
        train_data_files = glob.glob(directory+'data_train_*.npy')
        valid_data_files = glob.glob(directory+'data_valid_*.npy')
        # train_data_files = train_data_files[::2]
        # valid_data_files = valid_data_files[::2]

        self.setup_pipeline(train_data_files, valid_data_files, num_data_samples)
        self.build_model()
        self.build_training()
        self.build_evaluation()
        self.do_training(ckpt_dir=ckpt_dir)

    def run_restore(self, directory, ckpt_dir):
        valid_data_files = glob.glob(directory + 'data_*.npy')
        self.num_data_samples = 1000
        self.setup_test_pipeline(valid_data_files)
        self.build_model()
        self.build_training()
        self.build_evaluation()
        self.restore(ckpt_dir)

    def run_evaluate(self, data, ckpt_dir):
        self.num_data_samples = 80000
        self.build_model()
        self.build_training()
        self.build_evaluation()
        return self.do_evaluate(data, ckpt_dir)


def run_restore_static(directory, ckpt_dir):
    nn = SRCNN()
    nn.run_restore(directory, ckpt_dir)


# def run_evaluate_static(in_file, out_file, ckpt_dir):
#     N = 8
#     sub_y, sub_x = (N+1) * 128, (N+1) * 128
#     y_0, x_0, = 2500 - int(sub_y/2), 2500 - int(sub_x/2)
#
#     slc_y_2, slc_x_2 = slice(1, 128*N + 6, 2), slice(1, 128*N + 6, 2)
#     y_2, x_2 = np.arange((128*N)/2 + 3), np.arange((128*N)/2 + 3)
#     t, s = np.arange(1, (128*N)/2 + 2, 0.5), np.arange(1, (128*N)/2 + 2, 0.5)
#
#     h5f = h5py.File(in_file, 'r')
#     grd_a = get_grid_values_all(h5f, 'temp_11_0um_nom')
#     grd_a = grd_a[y_0:y_0+sub_y, x_0:x_0+sub_x]
#     grd_a = grd_a[slc_y_2, slc_x_2]
#     bt = grd_a
#     grd_a = normalize(grd_a, 'temp_11_0um_nom', mean_std_dct)
#     grd_a = resample_2d_linear_one(x_2, y_2, grd_a, t, s)
#
#     grd_b = get_grid_values_all(h5f, 'refl_0_65um_nom')
#     grd_b = grd_b[y_0:y_0+sub_y, x_0:x_0+sub_x]
#     grd_b = grd_b[slc_y_2, slc_x_2]
#     refl = grd_b
#     grd_b = normalize(grd_b, 'refl_0_65um_nom', mean_std_dct)
#     grd_b = resample_2d_linear_one(x_2, y_2, grd_b, t, s)
#
#     grd_c = get_grid_values_all(h5f, label_param)
#     grd_c = grd_c[y_0:y_0+sub_y, x_0:x_0+sub_x]
#     grd_c = grd_c[slc_y_2, slc_x_2]
#     if label_param != 'cloud_probability':
#         grd_c = normalize(grd_c, label_param, mean_std_dct)
#     grd_c = resample_2d_linear_one(x_2, y_2, grd_c, t, s)
#
#     data = np.stack([grd_a, grd_b, grd_c], axis=2)
#     data = np.expand_dims(data, axis=0)
#
#     nn = SRCNN()
#     out_sr = nn.run_evaluate(data, ckpt_dir)
#     if label_param != 'cloud_probability':
#         out_sr = denormalize(out_sr, label_param, mean_std_dct)
#     if out_file is not None:
#         np.save(out_file, out_sr)
#     else:
#         return out_sr, bt, refl


def run_evaluate_static(in_file, out_file, ckpt_dir):
    N = 8

    sub_y, sub_x = (N * 128) + 6, (N * 128) + 6
    y_0, x_0, = 2432 - int(sub_y/2), 2432 - int(sub_x/2)
    x_130 = slice(2, (N * 128) + 4)
    y_130 = slice(2, (N * 128) + 4)

    slc_y_2, slc_x_2 = slice(1, 128*N + 6, 2), slice(1, 128*N + 6, 2)
    y_2, x_2 = np.arange((128*N)/2 + 3), np.arange((128*N)/2 + 3)
    t, s = np.arange(1, (128*N)/2 + 2, 0.5), np.arange(1, (128*N)/2 + 2, 0.5)

    h5f = h5py.File(in_file, 'r')
    grd_a = get_grid_values_all(h5f, 'temp_11_0um_nom')
    grd_a = grd_a[y_0:y_0+sub_y, x_0:x_0+sub_x]
    grd_a = grd_a[y_130, x_130]
    bt = grd_a
    grd_a = normalize(grd_a, 'temp_11_0um_nom', mean_std_dct)

    grd_b = get_grid_values_all(h5f, 'refl_0_65um_nom')
    grd_b = grd_b[y_0:y_0+sub_y, x_0:x_0+sub_x]
    grd_b = grd_b[y_130, x_130]
    refl = grd_b
    grd_b = normalize(grd_b, 'refl_0_65um_nom', mean_std_dct)

    grd_c = get_grid_values_all(h5f, label_param)
    grd_c = grd_c[y_0:y_0+sub_y, x_0:x_0+sub_x]
    hr_grd_c = grd_c.copy()
    grd_c = grd_c[slc_y_2, slc_x_2]
    if label_param != 'cloud_probability':
        grd_c = normalize(grd_c, label_param, mean_std_dct)
    grd_c = resample_2d_linear_one(x_2, y_2, grd_c, t, s)
    print(grd_a.shape, grd_b.shape, grd_c.shape)

    data = np.stack([grd_a, grd_b, grd_c], axis=2)
    data = np.expand_dims(data, axis=0)

    nn = SRCNN()
    out_sr = nn.run_evaluate(data, ckpt_dir)
    if label_param != 'cloud_probability':
        out_sr = denormalize(out_sr, label_param, mean_std_dct)
    if out_file is not None:
        np.save(out_file, [out_sr, hr_grd_c])
    else:
        return out_sr, bt, refl


def run_evaluate_static_2(in_file, out_file, ckpt_dir):
    nda = np.load(in_file)

    grd_a = nda[:, 0, :, :]
    grd_a = grd_a[:, slc_y_2, slc_x_2]
    grd_a = normalize(grd_a, 'temp_11_0um_nom', mean_std_dct)
    grd_a = resample_2d_linear(x_2, y_2, grd_a, t, s)

    grd_b = nda[:, 2, :, :]
    grd_b = grd_b[:, slc_y_2, slc_x_2]
    grd_b = normalize(grd_b, 'refl_0_65um_nom', mean_std_dct)
    grd_b = resample_2d_linear(x_2, y_2, grd_b, t, s)

    grd_c = nda[:, 3, :, :]
    grd_c = grd_c[:, slc_y_2, slc_x_2]
    if label_param != 'cloud_probability':
        grd_c = normalize(grd_c, label_param, mean_std_dct)
    grd_c = resample_2d_linear(x_2, y_2, grd_c, t, s)

    data = np.stack([grd_a, grd_b, grd_c], axis=3)
    print(data.shape)

    nn = SRCNN()
    out_sr = nn.run_evaluate(data, ckpt_dir)
    if label_param != 'cloud_probability':
        out_sr = denormalize(out_sr, label_param, mean_std_dct)
        pass
    if out_file is not None:
        np.save(out_file, out_sr)
    else:
        return out_sr


def analyze(fpath='/Users/tomrink/clavrx_snpp_viirs.A2019080.0100.001.2019080064252.uwssec_B00038315.level2.h5', param='cloud_probability'):
    h5f = h5py.File(fpath, 'r')
    grd = get_grid_values_all(h5f, param)
    grd = np.where(np.isnan(grd), 0, grd)
    bt = get_grid_values_all(h5f, 'temp_11_0um_nom')
    refl = get_grid_values_all(h5f, 'refl_0_65um_nom')
    grd = grd[2432:4032, 2432:4032]
    bt = bt[2432:4032, 2432:4032]
    refl = refl[2432:4032, 2432:4032]
    print(grd.shape)

    grd_lr = grd[::2, ::2]
    print(grd_lr.shape)
    leny, lenx = grd_lr.shape
    rnd = np.random.normal(loc=0, scale=0.001, size=grd_lr.size)
    grd_lr = grd_lr + rnd.reshape(grd_lr.shape)
    if param == 'cloud_probability':
        grd_lr = np.where(grd_lr < 0, 0, grd_lr)
        grd_lr = np.where(grd_lr > 1, 1, grd_lr)

    x = np.arange(lenx)
    y = np.arange(leny)
    x_up = np.arange(0, lenx, 0.5)
    y_up = np.arange(0, leny, 0.5)

    grd_hr = resample_2d_linear_one(x, y, grd_lr, x_up, y_up)
    print(grd_hr.shape)

    h5f.close()

    return grd, grd_lr, grd_hr, bt, refl


if __name__ == "__main__":
    nn = SRCNN()
    nn.run('matchup_filename')