Skip to content
Snippets Groups Projects
Select Git revision
  • 0adcd4c6b356f5137742e805dae04d1badb05b13
  • master default protected
  • use_flight_altitude
  • distribute
4 results

plot_roc_curves.py

Blame
  • user avatar
    tomrink authored
    cd125b59
    History
    plot_roc_curves.py 7.99 KiB
    """Methods for plotting ROC (receiver operating characteristic) curve."""
    
    import numpy
    import matplotlib.colors
    import matplotlib.pyplot as pyplot
    import util.performance_diagrams as performance_diagrams
    
    DEFAULT_LINE_COLOUR = numpy.array([228, 26, 28], dtype=float) / 255
    DEFAULT_LINE_WIDTH = 3
    DEFAULT_RANDOM_LINE_COLOUR = numpy.full(3, 152. / 255)
    DEFAULT_RANDOM_LINE_WIDTH = 2
    
    LEVELS_FOR_PEIRCE_CONTOURS = numpy.linspace(0, 1, num=11, dtype=float)
    
    FIGURE_WIDTH_INCHES = 10
    FIGURE_HEIGHT_INCHES = 10
    
    FONT_SIZE = 20
    pyplot.rc('font', size=FONT_SIZE)
    pyplot.rc('axes', titlesize=FONT_SIZE)
    pyplot.rc('axes', labelsize=FONT_SIZE)
    pyplot.rc('xtick', labelsize=FONT_SIZE)
    pyplot.rc('ytick', labelsize=FONT_SIZE)
    pyplot.rc('legend', fontsize=FONT_SIZE)
    pyplot.rc('figure', titlesize=FONT_SIZE)
    
    
    def _get_pofd_pod_grid(pofd_spacing=0.01, pod_spacing=0.01):
        """Creates grid in POFD-POD space.
        M = number of rows (unique POD values) in grid
        N = number of columns (unique POFD values) in grid
        :param pofd_spacing: Spacing between grid cells in adjacent columns.
        :param pod_spacing: Spacing between grid cells in adjacent rows.
        :return: pofd_matrix: M-by-N numpy array of POFD values.
        :return: pod_matrix: M-by-N numpy array of POD values.
        """
    
        num_pofd_values = 1 + int(numpy.ceil(1. / pofd_spacing))
        num_pod_values = 1 + int(numpy.ceil(1. / pod_spacing))
    
        unique_pofd_values = numpy.linspace(0., 1., num=num_pofd_values)
        unique_pod_values = numpy.linspace(0., 1., num=num_pod_values)[::-1]
        return numpy.meshgrid(unique_pofd_values, unique_pod_values)
    
    
    def _get_peirce_colour_scheme():
        """Returns colour scheme for Peirce score.
        :return: colour_map_object: Colour scheme (instance of
            `matplotlib.colors.ListedColormap`).
        :return: colour_norm_object: Instance of `matplotlib.colors.BoundaryNorm`,
            defining the scale of the colour map.
        """
    
        this_colour_map_object = pyplot.cm.Blues
        this_colour_norm_object = matplotlib.colors.BoundaryNorm(
            LEVELS_FOR_PEIRCE_CONTOURS, this_colour_map_object.N)
    
        rgba_matrix = this_colour_map_object(this_colour_norm_object(
            LEVELS_FOR_PEIRCE_CONTOURS
        ))
    
        colour_list = [
            rgba_matrix[i, ..., :-1] for i in range(rgba_matrix.shape[0])
        ]
    
        colour_map_object = matplotlib.colors.ListedColormap(colour_list)
        colour_map_object.set_under(numpy.array([1, 1, 1]))
        colour_norm_object = matplotlib.colors.BoundaryNorm(
            LEVELS_FOR_PEIRCE_CONTOURS, colour_map_object.N)
    
        return colour_map_object, colour_norm_object
    
    
    def get_points_in_roc_curve(observed_labels, forecast_probabilities):
        """Creates points for ROC curve.
        E = number of examples
        T = number of binarization thresholds
        :param observed_labels: length-E numpy array of class labels (integers in
            0...1).
        :param forecast_probabilities: length-E numpy array with forecast
            probabilities of label = 1.
        :return: pofd_by_threshold: length-T numpy array of POFD (probability of
            false detection) values.
        :return: pod_by_threshold: length-T numpy array of POD (probability of
            detection) values.
        """
    
        assert numpy.all(numpy.logical_or(
            observed_labels == 0, observed_labels == 1
        ))
    
        assert numpy.all(numpy.logical_and(
            forecast_probabilities >= 0, forecast_probabilities <= 1
        ))
    
        observed_labels = observed_labels.astype(int)
        binarization_thresholds = numpy.linspace(0, 1, num=1001, dtype=float)
    
        num_thresholds = len(binarization_thresholds)
        pofd_by_threshold = numpy.full(num_thresholds, numpy.nan)
        pod_by_threshold = numpy.full(num_thresholds, numpy.nan)
    
        for k in range(num_thresholds):
            these_forecast_labels = (
                forecast_probabilities >= binarization_thresholds[k]
            ).astype(int)
    
            this_num_hits = numpy.sum(numpy.logical_and(
                these_forecast_labels == 1, observed_labels == 1
            ))
    
            this_num_false_alarms = numpy.sum(numpy.logical_and(
                these_forecast_labels == 1, observed_labels == 0
            ))
    
            this_num_misses = numpy.sum(numpy.logical_and(
                these_forecast_labels == 0, observed_labels == 1
            ))
    
            this_num_correct_nulls = numpy.sum(numpy.logical_and(
                these_forecast_labels == 0, observed_labels == 0
            ))
    
            try:
                pofd_by_threshold[k] = (
                    float(this_num_false_alarms) /
                    (this_num_false_alarms + this_num_correct_nulls)
                )
            except ZeroDivisionError:
                pass
    
            try:
                pod_by_threshold[k] = (
                    float(this_num_hits) / (this_num_hits + this_num_misses)
                )
            except ZeroDivisionError:
                pass
    
        pod_by_threshold = numpy.array([1.] + pod_by_threshold.tolist() + [0.])
        pofd_by_threshold = numpy.array([1.] + pofd_by_threshold.tolist() + [0.])
    
        return pofd_by_threshold, pod_by_threshold
    
    
    def plot_roc_curve(
            observed_labels, forecast_probabilities,
            line_colour=DEFAULT_LINE_COLOUR, line_width=DEFAULT_LINE_WIDTH,
            random_line_colour=DEFAULT_RANDOM_LINE_COLOUR,
            random_line_width=DEFAULT_RANDOM_LINE_WIDTH, axes_object=None):
        """Plots ROC curve.
        E = number of examples
        :param observed_labels: length-E numpy array of class labels (integers in
            0...1).
        :param forecast_probabilities: length-E numpy array with forecast
            probabilities of label = 1.
        :param line_colour: Colour (in any format accepted by `matplotlib.colors`).
        :param line_width: Line width (real positive number).
        :param random_line_colour: Colour of reference line (ROC curve for random
            predictor).
        :param random_line_width: Width of reference line (ROC curve for random
            predictor).
        :param axes_object: Will plot on these axes (instance of
            `matplotlib.axes._subplots.AxesSubplot`).  If `axes_object is None`,
            will create new axes.
        :return: pofd_by_threshold: See doc for `get_points_in_roc_curve`.
        :return: pod_by_threshold: Same.
        """
    
        pofd_by_threshold, pod_by_threshold = get_points_in_roc_curve(
            observed_labels=observed_labels,
            forecast_probabilities=forecast_probabilities)
    
        if axes_object is None:
            _, axes_object = pyplot.subplots(
                1, 1, figsize=(FIGURE_WIDTH_INCHES, FIGURE_HEIGHT_INCHES)
            )
    
        pofd_matrix, pod_matrix = _get_pofd_pod_grid()
        peirce_score_matrix = pod_matrix - pofd_matrix
    
        colour_map_object, colour_norm_object = _get_peirce_colour_scheme()
    
        pyplot.contourf(
            pofd_matrix, pod_matrix, peirce_score_matrix,
            LEVELS_FOR_PEIRCE_CONTOURS, cmap=colour_map_object,
            norm=colour_norm_object, vmin=0., vmax=1., axes=axes_object)
    
        # TODO(thunderhoser): Calling private method is a HACK.
        colour_bar_object = performance_diagrams._add_colour_bar(
            axes_object=axes_object, colour_map_object=colour_map_object,
            colour_norm_object=colour_norm_object,
            values_to_colour=peirce_score_matrix, min_colour_value=0.,
            max_colour_value=1., orientation_string='vertical',
            extend_min=False, extend_max=False)
    
        print(colour_bar_object)
        colour_bar_object.set_label('Peirce score')
    
        random_x_coords = numpy.array([0., 1.])
        random_y_coords = numpy.array([0., 1.])
        axes_object.plot(
            random_x_coords, random_y_coords, color=random_line_colour,
            linestyle='dashed', linewidth=random_line_width)
    
        nan_flags = numpy.logical_or(
            numpy.isnan(pofd_by_threshold), numpy.isnan(pod_by_threshold)
        )
    
        if not numpy.all(nan_flags):
            real_indices = numpy.where(numpy.invert(nan_flags))[0]
            axes_object.plot(
                pofd_by_threshold[real_indices], pod_by_threshold[real_indices],
                color=line_colour, linestyle='solid', linewidth=line_width)
    
        axes_object.set_xlabel('POFD (probability of false detection)')
        axes_object.set_ylabel('POD (probability of detection)')
        axes_object.set_xlim(0., 1.)
        axes_object.set_ylim(0., 1.)
    
        return pofd_by_threshold, pod_by_threshold