Skip to content
Snippets Groups Projects
cloud_opd_fcn_abi.py 47.77 KiB
import tensorflow as tf

from deeplearning.cloud_fraction_fcn_abi import get_label_data_5cat
from util.plot_cm import confusion_matrix_values
from util.augment import augment_image
from util.setup_cloud_fraction import logdir, modeldir, now, ancillary_path
from util.util import EarlyStop, normalize, denormalize, scale, descale, get_grid_values_all, make_tf_callable_generator
import glob
import os, datetime
import numpy as np
import pickle
import h5py
import xarray as xr
import gc
import time

AUTOTUNE = tf.data.AUTOTUNE

LOG_DEVICE_PLACEMENT = False

PROC_BATCH_SIZE = 4
PROC_BATCH_BUFFER_SIZE = 5000

NumClasses = 5
if NumClasses == 2:
    NumLogits = 1
else:
    NumLogits = NumClasses

BATCH_SIZE = 128
NUM_EPOCHS = 80

TRACK_MOVING_AVERAGE = False
EARLY_STOP = True

NOISE_TRAINING = False
NOISE_STDDEV = 0.01
DO_AUGMENT = True

DO_SMOOTH = False
SIGMA = 1.0
DO_ZERO_OUT = False

# setup scaling parameters dictionary
mean_std_dct = {}
mean_std_file = ancillary_path+'mean_std_lo_hi_l2.pkl'
f = open(mean_std_file, 'rb')
mean_std_dct_l2 = pickle.load(f)
f.close()

mean_std_file = ancillary_path+'mean_std_lo_hi_l1b.pkl'
f = open(mean_std_file, 'rb')
mean_std_dct_l1b = pickle.load(f)
f.close()

mean_std_dct.update(mean_std_dct_l1b)
mean_std_dct.update(mean_std_dct_l2)

IMG_DEPTH = 1

label_param = 'cld_opd_dcomp'

params = ['temp_11_0um_nom', 'refl_0_65um_nom', 'refl_submin_ch01', 'refl_submax_ch01', 'refl_substddev_ch01', 'cloud_probability', label_param]
params_i = ['temp_11_0um_nom', 'refl_0_65um_nom', 'cloud_probability', label_param]
# data_params_half = ['temp_11_0um_nom']
data_params_half = ['temp_11_0um_nom', 'refl_0_65um_nom']
sub_fields = ['refl_submin_ch01', 'refl_submax_ch01', 'refl_substddev_ch01']
data_params_full = ['refl_0_65um_nom']

label_idx_i = params_i.index(label_param)
label_idx = params.index(label_param)

print('data_params_half: ', data_params_half)
print('data_params_full: ', data_params_full)
print('label_param: ', label_param)

KERNEL_SIZE = 3
X_LEN = Y_LEN = 128

if KERNEL_SIZE == 3:
    slc_x = slice(0, int(X_LEN/4) + 2)
    slc_y = slice(0, int(Y_LEN/4) + 2)
    x_64 = slice(4, X_LEN + 4)
    y_64 = slice(4, Y_LEN + 4)
# ----------------------------------------


def build_residual_conv2d_block(conv, num_filters, block_name, activation=tf.nn.relu, padding='SAME',
                                kernel_initializer='he_uniform', scale=None, kernel_size=3,
                                do_drop_out=True, drop_rate=0.5, do_batch_norm=True):

    with tf.name_scope(block_name):
        skip = tf.keras.layers.Conv2D(num_filters, kernel_size=kernel_size, padding=padding, kernel_initializer=kernel_initializer, activation=activation)(conv)
        skip = tf.keras.layers.Conv2D(num_filters, kernel_size=kernel_size, padding=padding, activation=None)(skip)

        if scale is not None:
            skip = tf.keras.layers.Lambda(lambda x: x * scale)(skip)

        if do_drop_out:
            skip = tf.keras.layers.Dropout(drop_rate)(skip)

        if do_batch_norm:
            skip = tf.keras.layers.BatchNormalization()(skip)

        conv = conv + skip
        print(block_name+':', conv.shape)

    return conv


def upsample_mean(grd):
    bsize, ylen, xlen = grd.shape
    up = np.zeros((bsize, ylen*2, xlen*2))

    up[:, ::4, ::4] = grd[:, ::4, ::4]
    up[:, 1::4, ::4] = grd[:, ::4, ::4]
    up[:, ::4, 1::4] = grd[:, ::4, ::4]
    up[:, 1::4, 1::4] = grd[:, ::4, ::4]

    return up


def get_grid_cell_mean(grd_k):
    grd_k = np.where(np.isnan(grd_k), 0, grd_k)

    mean = np.nanmean([grd_k[:, 0::4, 0::4], grd_k[:, 1::4, 0::4], grd_k[:, 2::4, 0::4], grd_k[:, 3::4, 0::4],
                       grd_k[:, 0::4, 1::4], grd_k[:, 1::4, 1::4], grd_k[:, 2::4, 1::4], grd_k[:, 3::4, 1::4],
                       grd_k[:, 0::4, 2::4], grd_k[:, 1::4, 2::4], grd_k[:, 2::4, 2::4], grd_k[:, 3::4, 2::4],
                       grd_k[:, 0::4, 3::4], grd_k[:, 1::4, 3::4], grd_k[:, 2::4, 3::4], grd_k[:, 3::4, 3::4]], axis=0)

    return mean


def get_min_max_std(grd_k):
    grd_k = np.where(np.isnan(grd_k), 0, grd_k)

    lo = np.nanmin([grd_k[:, 0::4, 0::4], grd_k[:, 1::4, 0::4], grd_k[:, 2::4, 0::4], grd_k[:, 3::4, 0::4],
                    grd_k[:, 0::4, 1::4], grd_k[:, 1::4, 1::4], grd_k[:, 2::4, 1::4], grd_k[:, 3::4, 1::4],
                    grd_k[:, 0::4, 2::4], grd_k[:, 1::4, 2::4], grd_k[:, 2::4, 2::4], grd_k[:, 3::4, 2::4],
                    grd_k[:, 0::4, 3::4], grd_k[:, 1::4, 3::4], grd_k[:, 2::4, 3::4], grd_k[:, 3::4, 3::4]], axis=0)

    hi = np.nanmax([grd_k[:, 0::4, 0::4], grd_k[:, 1::4, 0::4], grd_k[:, 2::4, 0::4], grd_k[:, 3::4, 0::4],
                    grd_k[:, 0::4, 1::4], grd_k[:, 1::4, 1::4], grd_k[:, 2::4, 1::4], grd_k[:, 3::4, 1::4],
                    grd_k[:, 0::4, 2::4], grd_k[:, 1::4, 2::4], grd_k[:, 2::4, 2::4], grd_k[:, 3::4, 2::4],
                    grd_k[:, 0::4, 3::4], grd_k[:, 1::4, 3::4], grd_k[:, 2::4, 3::4], grd_k[:, 3::4, 3::4]], axis=0)

    std = np.nanstd([grd_k[:, 0::4, 0::4], grd_k[:, 1::4, 0::4], grd_k[:, 2::4, 0::4], grd_k[:, 3::4, 0::4],
                     grd_k[:, 0::4, 1::4], grd_k[:, 1::4, 1::4], grd_k[:, 2::4, 1::4], grd_k[:, 3::4, 1::4],
                     grd_k[:, 0::4, 2::4], grd_k[:, 1::4, 2::4], grd_k[:, 2::4, 2::4], grd_k[:, 3::4, 2::4],
                     grd_k[:, 0::4, 3::4], grd_k[:, 1::4, 3::4], grd_k[:, 2::4, 3::4], grd_k[:, 3::4, 3::4]], axis=0)

    avg = np.nanmean([grd_k[:, 0::4, 0::4], grd_k[:, 1::4, 0::4], grd_k[:, 2::4, 0::4], grd_k[:, 3::4, 0::4],
                      grd_k[:, 0::4, 1::4], grd_k[:, 1::4, 1::4], grd_k[:, 2::4, 1::4], grd_k[:, 3::4, 1::4],
                      grd_k[:, 0::4, 2::4], grd_k[:, 1::4, 2::4], grd_k[:, 2::4, 2::4], grd_k[:, 3::4, 2::4],
                      grd_k[:, 0::4, 3::4], grd_k[:, 1::4, 3::4], grd_k[:, 2::4, 3::4], grd_k[:, 3::4, 3::4]], axis=0)

    return lo, hi, std, avg


def get_cldy_frac_opd(cld_prob, opd):
    cld_prob = np.where(np.isnan(cld_prob), 0, cld_prob)
    cld = np.where(cld_prob < 0.5, 0, 1)
    opd[cld == 0] = 0.0

    s = cld[:, 0::4, 0::4] + cld[:, 1::4, 0::4] + cld[:, 2::4, 0::4] + cld[:, 3::4, 0::4] + \
        cld[:, 0::4, 1::4] + cld[:, 1::4, 1::4] + cld[:, 2::4, 1::4] + cld[:, 3::4, 1::4] + \
        cld[:, 0::4, 2::4] + cld[:, 1::4, 2::4] + cld[:, 2::4, 2::4] + cld[:, 3::4, 2::4] + \
        cld[:, 0::4, 3::4] + cld[:, 1::4, 3::4] + cld[:, 2::4, 3::4] + cld[:, 3::4, 3::4]

    cldy_opd = np.sum([opd[:, 0::4, 0::4], opd[:, 1::4, 0::4], opd[:, 2::4, 0::4], opd[:, 3::4, 0::4],
                       opd[:, 0::4, 1::4], opd[:, 1::4, 1::4], opd[:, 2::4, 1::4], opd[:, 3::4, 1::4],
                       opd[:, 0::4, 2::4], opd[:, 1::4, 2::4], opd[:, 2::4, 2::4], opd[:, 3::4, 2::4],
                       opd[:, 0::4, 3::4], opd[:, 1::4, 3::4], opd[:, 2::4, 3::4], opd[:, 3::4, 3::4]], axis=0)

    s = np.where(s == 0, 1, s)
    cldy_opd /= s

    return cldy_opd


class SRCNN:
    
    def __init__(self):

        self.train_data = None
        self.train_label = None
        self.test_data = None
        self.test_label = None
        self.test_data_denorm = None
        
        self.train_dataset = None
        self.inner_train_dataset = None
        self.test_dataset = None
        self.eval_dataset = None
        self.X_img = None
        self.X_prof = None
        self.X_u = None
        self.X_v = None
        self.X_sfc = None
        self.inputs = []
        self.y = None
        self.handle = None
        self.inner_handle = None
        self.in_mem_batch = None

        self.h5f_l1b_trn = None
        self.h5f_l1b_tst = None
        self.h5f_l2_trn = None
        self.h5f_l2_tst = None

        self.logits = None

        self.predict_data = None
        self.predict_dataset = None
        self.mean_list = None
        self.std_list = None
        
        self.training_op = None
        self.correct = None
        self.accuracy = None
        self.loss = None
        self.pred_class = None
        self.variable_averages = None

        self.global_step = None

        self.writer_train = None
        self.writer_valid = None
        self.writer_train_valid_loss = None

        self.OUT_OF_RANGE = False

        self.model = None
        self.optimizer = None
        self.ema = None
        self.train_loss = None
        self.train_accuracy = None
        self.test_loss = None
        self.test_accuracy = None
        self.test_auc = None
        self.test_recall = None
        self.test_precision = None
        self.test_confusion_matrix = None
        self.test_true_pos = None
        self.test_true_neg = None
        self.test_false_pos = None
        self.test_false_neg = None

        self.test_labels = []
        self.test_preds = []
        self.test_probs = None
        self.test_input = []
        self.test_cat_cf = []

        self.learningRateSchedule = None
        self.num_data_samples = None
        self.initial_learning_rate = None

        self.data_dct = None
        self.train_data_files = None
        self.train_label_files = None
        self.test_data_files = None
        self.test_label_files = None

        # self.n_chans = len(data_params_half) + len(data_params_full) + 1
        self.n_chans = 5

        self.X_img = tf.keras.Input(shape=(None, None, self.n_chans))

        self.inputs.append(self.X_img)

        tf.debugging.set_log_device_placement(LOG_DEVICE_PLACEMENT)

    def get_in_mem_data_batch(self, idxs, is_training):
        if is_training:
            data_files = self.train_data_files
            label_files = self.train_label_files
        else:
            data_files = self.test_data_files
            label_files = self.test_label_files

        data_s = []
        label_s = []
        for k in idxs:
            f = data_files[k]
            nda = np.load(f)
            data_s.append(nda)

            f = label_files[k]
            nda = np.load(f)
            label_s.append(nda)
        input_data = np.concatenate(data_s)
        input_label = np.concatenate(label_s)

        data_norm = []
        # for param in data_params_half:
        #     idx = params.index(param)
        #     tmp = input_data[:, idx, :, :]
        #     tmp = tmp[:, slc_y, slc_x]
        #     tmp = normalize(tmp, param, mean_std_dct)
        #     data_norm.append(tmp)

        tmp = input_label[:, params_i.index('cloud_probability'), :, :]
        cld_prob = tmp.copy()
        tmp = get_grid_cell_mean(tmp)
        tmp = tmp[:, slc_y, slc_x]
        data_norm.append(tmp)

        for param in sub_fields:
            idx = params.index(param)
            tmp = input_data[:, idx, :, :]
            tmp = tmp[:, slc_y, slc_x]
            if param != 'refl_substddev_ch01':
                # tmp = normalize(tmp, 'refl_0_65um_nom', mean_std_dct)
                tmp = scale(tmp, 'refl_0_65um_nom', mean_std_dct)
            else:
                tmp = np.where(np.isnan(tmp), 0, tmp)
            data_norm.append(tmp)

        tmp = input_label[:, label_idx_i, :, :]
        tmp = get_grid_cell_mean(tmp)
        tmp = scale(tmp, label_param, mean_std_dct)
        tmp = tmp[:, slc_y, slc_x]
        data_norm.append(tmp)
        # ---------
        data = np.stack(data_norm, axis=3)
        data = data.astype(np.float32)

        # -----------------------------------------------------
        # -----------------------------------------------------
        label = input_label[:, label_idx_i, :, :]
        label = label[:, y_64, x_64]
        cld_prob = cld_prob[:, y_64, x_64]
        if not is_training:
            cat_cf = get_label_data_5cat(cld_prob)
            self.test_cat_cf.append(cat_cf)
        label = get_cldy_frac_opd(cld_prob, label)
        label = scale(label, label_param, mean_std_dct)

        label = np.where(np.isnan(label), 0, label)
        label = np.expand_dims(label, axis=3)

        data = data.astype(np.float32)
        label = label.astype(np.float32)

        return data, label

    def get_in_mem_data_batch_train(self, idxs):
        return self.get_in_mem_data_batch(idxs, True)

    def get_in_mem_data_batch_test(self, idxs):
        return self.get_in_mem_data_batch(idxs, False)

    @tf.function(input_signature=[tf.TensorSpec(None, tf.int32)])
    def data_function(self, indexes):
        out = tf.numpy_function(self.get_in_mem_data_batch_train, [indexes], [tf.float32, tf.float32])
        return out

    @tf.function(input_signature=[tf.TensorSpec(None, tf.int32)])
    def data_function_test(self, indexes):
        out = tf.numpy_function(self.get_in_mem_data_batch_test, [indexes], [tf.float32, tf.float32])
        return out

    def get_train_dataset(self, num_files):
        def integer_gen(limit):
            n = 0
            while n < limit:
                yield n
                n += 1
        num_gen = integer_gen(num_files)
        gen = make_tf_callable_generator(num_gen)

        dataset = tf.data.Dataset.from_generator(gen, output_types=tf.int32)
        dataset = dataset.batch(PROC_BATCH_SIZE)
        dataset = dataset.map(self.data_function, num_parallel_calls=8)
        dataset = dataset.cache()
        dataset = dataset.shuffle(PROC_BATCH_BUFFER_SIZE, reshuffle_each_iteration=True)
        if DO_AUGMENT:
            dataset = dataset.map(augment_image(), num_parallel_calls=8)
        dataset = dataset.prefetch(buffer_size=1)
        self.train_dataset = dataset

    def get_test_dataset(self, num_files):
        def integer_gen(limit):
            n = 0
            while n < limit:
                yield n
                n += 1
        num_gen = integer_gen(num_files)
        gen = make_tf_callable_generator(num_gen)

        dataset = tf.data.Dataset.from_generator(gen, output_types=tf.int32)
        dataset = dataset.batch(PROC_BATCH_SIZE)
        dataset = dataset.map(self.data_function_test, num_parallel_calls=8)
        dataset = dataset.cache()
        self.test_dataset = dataset

    def setup_pipeline(self, train_data_files, train_label_files, test_data_files, test_label_files, num_train_samples):
        self.train_data_files = train_data_files
        self.train_label_files = train_label_files
        self.test_data_files = test_data_files
        self.test_label_files = test_label_files

        self.get_train_dataset(len(train_data_files))
        self.get_test_dataset(len(test_data_files))

        self.num_data_samples = num_train_samples  # approximately

        print('datetime: ', now)
        print('training and test data: ')
        print('---------------------------')
        print('num train files: ', len(train_data_files))
        print('BATCH SIZE: ', BATCH_SIZE)
        print('num test files: ', len(test_data_files))
        print('setup_pipeline: Done')

    def setup_test_pipeline(self, test_data_files, test_label_files):
        self.test_data_files = test_data_files
        self.test_label_files = test_label_files
        self.get_test_dataset(len(test_data_files))
        print('setup_test_pipeline: Done')

    def build_srcnn(self, do_drop_out=False, do_batch_norm=False, drop_rate=0.5, factor=2):
        print('build_cnn')
        padding = "SAME"

        # activation = tf.nn.relu
        # activation = tf.nn.elu
        activation = tf.nn.relu
        momentum = 0.99

        num_filters = 64

        input_2d = self.inputs[0]
        print('input: ', input_2d.shape)

        conv = conv_b = tf.keras.layers.Conv2D(num_filters, kernel_size=KERNEL_SIZE, kernel_initializer='he_uniform', activation=activation, padding='VALID')(input_2d)
        print(conv.shape)

        # if NOISE_TRAINING:
        #     conv = conv_b = tf.keras.layers.GaussianNoise(stddev=NOISE_STDDEV)(conv)

        scale = 0.2

        conv_b = build_residual_conv2d_block(conv_b, num_filters, 'Residual_Block_1', kernel_size=KERNEL_SIZE, scale=scale)

        conv_b = build_residual_conv2d_block(conv_b, num_filters, 'Residual_Block_2', kernel_size=KERNEL_SIZE, scale=scale)

        conv_b = build_residual_conv2d_block(conv_b, num_filters, 'Residual_Block_3', kernel_size=KERNEL_SIZE, scale=scale)

        conv_b = build_residual_conv2d_block(conv_b, num_filters, 'Residual_Block_4', kernel_size=KERNEL_SIZE, scale=scale)

        conv_b = build_residual_conv2d_block(conv_b, num_filters, 'Residual_Block_5', kernel_size=KERNEL_SIZE, scale=scale)

        conv_b = build_residual_conv2d_block(conv_b, num_filters, 'Residual_Block_6', kernel_size=KERNEL_SIZE, scale=scale)

        conv_b = tf.keras.layers.Conv2D(num_filters, kernel_size=3, strides=1, activation=activation, kernel_initializer='he_uniform', padding=padding)(conv_b)

        # conv = conv + conv_b
        conv = conv_b
        print(conv.shape)

        # This is effectively a Dense layer
        self.logits = tf.keras.layers.Conv2D(1, kernel_size=1, strides=1, padding=padding, name='regression')(conv)
        print(self.logits.shape)

    def build_training(self):

        self.loss = tf.keras.losses.MeanSquaredError()  # Regression
        # self.loss = tf.keras.losses.MeanAbsoluteError() # Regression

        # decayed_learning_rate = learning_rate * decay_rate ^ (global_step / decay_steps)
        initial_learning_rate = 0.001
        decay_rate = 0.95
        steps_per_epoch = int(self.num_data_samples/BATCH_SIZE)  # one epoch
        decay_steps = int(steps_per_epoch) * 1
        print('initial rate, decay rate, steps/epoch, decay steps: ', initial_learning_rate, decay_rate, steps_per_epoch, decay_steps)

        self.learningRateSchedule = tf.keras.optimizers.schedules.ExponentialDecay(initial_learning_rate, decay_steps, decay_rate)

        optimizer = tf.keras.optimizers.Adam(learning_rate=self.learningRateSchedule)

        if TRACK_MOVING_AVERAGE:
            # Not sure that this works properly (from tfa)
            # optimizer = tfa.optimizers.MovingAverage(optimizer)
            self.ema = tf.train.ExponentialMovingAverage(decay=0.9999)

        self.optimizer = optimizer
        self.initial_learning_rate = initial_learning_rate

    def build_evaluation(self):
        self.train_accuracy = tf.keras.metrics.MeanAbsoluteError(name='train_accuracy')
        self.test_accuracy = tf.keras.metrics.MeanAbsoluteError(name='test_accuracy')
        self.train_loss = tf.keras.metrics.Mean(name='train_loss')
        self.test_loss = tf.keras.metrics.Mean(name='test_loss')

    @tf.function(input_signature=[tf.TensorSpec(None, tf.float32), tf.TensorSpec(None, tf.float32)])
    def train_step(self, inputs, labels):
        labels = tf.squeeze(labels, axis=[3])
        with tf.GradientTape() as tape:
            pred = self.model([inputs], training=True)
            loss = self.loss(labels, pred)
            total_loss = loss
            if len(self.model.losses) > 0:
                reg_loss = tf.math.add_n(self.model.losses)
                total_loss = loss + reg_loss
        gradients = tape.gradient(total_loss, self.model.trainable_variables)
        self.optimizer.apply_gradients(zip(gradients, self.model.trainable_variables))
        if TRACK_MOVING_AVERAGE:
            self.ema.apply(self.model.trainable_variables)

        self.train_loss(loss)
        self.train_accuracy(labels, pred)

        return loss

    @tf.function(input_signature=[tf.TensorSpec(None, tf.float32), tf.TensorSpec(None, tf.float32)])
    def test_step(self, inputs, labels):
        labels = tf.squeeze(labels, axis=[3])
        pred = self.model([inputs], training=False)
        t_loss = self.loss(labels, pred)

        self.test_loss(t_loss)
        self.test_accuracy(labels, pred)

    # @tf.function(input_signature=[tf.TensorSpec(None, tf.float32), tf.TensorSpec(None, tf.float32)])
    # decorator commented out because pred.numpy(): pred not evaluated yet.
    def predict(self, inputs, labels):
        pred = self.model([inputs], training=False)
        # t_loss = self.loss(tf.squeeze(labels, axis=[3]), pred)
        t_loss = self.loss(labels, pred)

        self.test_labels.append(labels)
        self.test_preds.append(pred.numpy())
        self.test_input.append(inputs)

        self.test_loss(t_loss)
        self.test_accuracy(labels, pred)

    def reset_test_metrics(self):
        self.test_loss.reset_states()
        self.test_accuracy.reset_states()

    def get_metrics(self):
        recall = self.test_recall.result()
        precsn = self.test_precision.result()
        f1 = 2 * (precsn * recall) / (precsn + recall)

        tn = self.test_true_neg.result()
        tp = self.test_true_pos.result()
        fn = self.test_false_neg.result()
        fp = self.test_false_pos.result()

        mcc = ((tp * tn) - (fp * fn)) / np.sqrt((tp + fp) * (tp + fn) * (tn + fp) * (tn + fn))
        return f1, mcc

    def do_training(self, ckpt_dir=None):

        if ckpt_dir is None:
            if not os.path.exists(modeldir):
                os.mkdir(modeldir)
            ckpt = tf.train.Checkpoint(step=tf.Variable(1), model=self.model)
            ckpt_manager = tf.train.CheckpointManager(ckpt, modeldir, max_to_keep=3)
        else:
            ckpt = tf.train.Checkpoint(step=tf.Variable(1), model=self.model)
            ckpt_manager = tf.train.CheckpointManager(ckpt, ckpt_dir, max_to_keep=3)
            ckpt.restore(ckpt_manager.latest_checkpoint)

        self.writer_train = tf.summary.create_file_writer(os.path.join(logdir, 'plot_train'))
        self.writer_valid = tf.summary.create_file_writer(os.path.join(logdir, 'plot_valid'))
        self.writer_train_valid_loss = tf.summary.create_file_writer(os.path.join(logdir, 'plot_train_valid_loss'))

        step = 0
        total_time = 0
        best_test_loss = np.finfo(dtype=np.float).max

        if EARLY_STOP:
            es = EarlyStop()

        for epoch in range(NUM_EPOCHS):
            self.train_loss.reset_states()
            self.train_accuracy.reset_states()

            t0 = datetime.datetime.now().timestamp()

            proc_batch_cnt = 0
            n_samples = 0

            for data, label in self.train_dataset:
                trn_ds = tf.data.Dataset.from_tensor_slices((data, label))
                trn_ds = trn_ds.batch(BATCH_SIZE)
                for mini_batch in trn_ds:
                    if self.learningRateSchedule is not None:
                        loss = self.train_step(mini_batch[0], mini_batch[1])

                    if (step % 100) == 0:

                        with self.writer_train.as_default():
                            tf.summary.scalar('loss_trn', loss.numpy(), step=step)
                            tf.summary.scalar('learning_rate', self.optimizer._decayed_lr('float32').numpy(), step=step)
                            tf.summary.scalar('num_train_steps', step, step=step)
                            tf.summary.scalar('num_epochs', epoch, step=step)

                        self.reset_test_metrics()
                        for data_tst, label_tst in self.test_dataset:
                            tst_ds = tf.data.Dataset.from_tensor_slices((data_tst, label_tst))
                            tst_ds = tst_ds.batch(BATCH_SIZE)
                            for mini_batch_test in tst_ds:
                                self.test_step(mini_batch_test[0], mini_batch_test[1])

                        with self.writer_valid.as_default():
                            tf.summary.scalar('loss_val', self.test_loss.result(), step=step)
                            tf.summary.scalar('acc_val', self.test_accuracy.result(), step=step)

                        with self.writer_train_valid_loss.as_default():
                            tf.summary.scalar('loss_trn', loss.numpy(), step=step)
                            tf.summary.scalar('loss_val', self.test_loss.result(), step=step)

                        print('****** test loss, acc, lr: ', self.test_loss.result().numpy(), self.test_accuracy.result().numpy(),
                              self.optimizer._decayed_lr('float32').numpy())

                    step += 1
                    print('train loss: ', loss.numpy())

                proc_batch_cnt += 1
                n_samples += data.shape[0]
                print('proc_batch_cnt: ', proc_batch_cnt, n_samples)

            t1 = datetime.datetime.now().timestamp()
            print('End of Epoch: ', epoch+1, 'elapsed time: ', (t1-t0))
            total_time += (t1-t0)

            self.reset_test_metrics()
            for data, label in self.test_dataset:
                ds = tf.data.Dataset.from_tensor_slices((data, label))
                ds = ds.batch(BATCH_SIZE)
                for mini_batch in ds:
                    self.test_step(mini_batch[0], mini_batch[1])

            print('loss, acc: ', self.test_loss.result().numpy(), self.test_accuracy.result().numpy())
            print('------------------------------------------------------')

            tst_loss = self.test_loss.result().numpy()
            if tst_loss < best_test_loss:
                best_test_loss = tst_loss
                ckpt_manager.save()

            if EARLY_STOP and es.check_stop(tst_loss):
                break

        print('total time: ', total_time)
        self.writer_train.close()
        self.writer_valid.close()
        self.writer_train_valid_loss.close()

    def build_model(self):
        self.build_srcnn()
        self.model = tf.keras.Model(self.inputs, self.logits)

    def restore(self, ckpt_dir):

        ckpt = tf.train.Checkpoint(step=tf.Variable(1), model=self.model)
        ckpt_manager = tf.train.CheckpointManager(ckpt, ckpt_dir, max_to_keep=3)
        ckpt.restore(ckpt_manager.latest_checkpoint)

        self.reset_test_metrics()

        for data, label in self.test_dataset:
            ds = tf.data.Dataset.from_tensor_slices((data, label))
            ds = ds.batch(BATCH_SIZE)
            for mini_batch_test in ds:
                self.predict(mini_batch_test[0], mini_batch_test[1])

        print('loss, acc: ', self.test_loss.result().numpy(), self.test_accuracy.result().numpy())

        labels = np.concatenate(self.test_labels)
        preds = np.concatenate(self.test_preds)
        inputs = np.concatenate(self.test_input)
        cat_cld_frac = np.concatenate(self.test_cat_cf)

        # labels = denormalize(labels, label_param, mean_std_dct)
        # preds = denormalize(preds, label_param, mean_std_dct)
        labels = descale(labels, label_param, mean_std_dct)
        preds = descale(preds, label_param, mean_std_dct)

        return labels, cat_cld_frac, preds, inputs

    def do_evaluate(self, inputs, ckpt_dir):

        ckpt = tf.train.Checkpoint(step=tf.Variable(1), model=self.model)
        ckpt_manager = tf.train.CheckpointManager(ckpt, ckpt_dir, max_to_keep=3)
        ckpt.restore(ckpt_manager.latest_checkpoint)

        self.reset_test_metrics()

        pred = self.model([inputs], training=False)
        self.test_probs = pred
        pred = pred.numpy()

        return pred

    def run(self, directory, ckpt_dir=None, num_data_samples=50000):
        train_data_files = glob.glob(directory+'train*mres*.npy')
        valid_data_files = glob.glob(directory+'valid*mres*.npy')
        train_label_files = glob.glob(directory+'train*ires*.npy')
        valid_label_files = glob.glob(directory+'valid*ires*.npy')
        self.setup_pipeline(train_data_files, train_label_files, valid_data_files, valid_label_files, num_data_samples)

        self.build_model()
        self.build_training()
        self.build_evaluation()
        self.do_training(ckpt_dir=ckpt_dir)

    def run_restore(self, directory, ckpt_dir):
        self.num_data_samples = 1000

        valid_data_files = glob.glob(directory + 'valid*mres*.npy')
        valid_label_files = [f.replace('mres', 'ires') for f in valid_data_files]
        self.setup_test_pipeline(valid_data_files, valid_label_files)

        self.build_model()
        self.build_training()
        self.build_evaluation()
        return self.restore(ckpt_dir)

    def run_evaluate(self, data, ckpt_dir):
        # data = tf.convert_to_tensor(data, dtype=tf.float32)
        self.num_data_samples = 80000
        self.build_model()
        self.build_training()
        self.build_evaluation()
        return self.do_evaluate(data, ckpt_dir)

    def setup_inference(self, ckpt_dir):
        self.num_data_samples = 80000
        self.build_model()
        self.build_training()
        self.build_evaluation()

        ckpt = tf.train.Checkpoint(step=tf.Variable(1), model=self.model)
        ckpt_manager = tf.train.CheckpointManager(ckpt, ckpt_dir, max_to_keep=3)
        ckpt.restore(ckpt_manager.latest_checkpoint)

    def do_inference(self, inputs):
        self.reset_test_metrics()

        pred = self.model([inputs], training=False)
        self.test_probs = pred
        pred = pred.numpy()

        return pred

    def run_inference(self, in_file, out_file):
        gc.collect()

        h5f = h5py.File(in_file, 'r')

        bt = get_grid_values_all(h5f, 'temp_11_0um_nom')
        y_len, x_len = bt.shape
        refl = get_grid_values_all(h5f, 'refl_0_65um_nom')
        refl_lo = get_grid_values_all(h5f, 'refl_0_65um_nom_min_sub')
        refl_hi = get_grid_values_all(h5f, 'refl_0_65um_nom_max_sub')
        refl_std = get_grid_values_all(h5f, 'refl_0_65um_nom_stddev_sub')
        cp = get_grid_values_all(h5f, label_param)
        # lons = get_grid_values_all(h5f, 'longitude')
        # lats = get_grid_values_all(h5f, 'latitude')

        cld_frac = self.run_inference_(bt, refl, refl_lo, refl_hi, refl_std, cp)

        cld_frac_out = np.zeros((y_len, x_len), dtype=np.int8)
        border = int((KERNEL_SIZE - 1) / 2)
        cld_frac_out[border:y_len - border, border:x_len - border] = cld_frac[0, :, :]

        # Use this hack for now.
        off_earth = (bt <= 161.0)
        night = np.isnan(refl)
        cld_frac_out[off_earth] = -1
        cld_frac_out[np.invert(off_earth) & night] = -1

        # ---  Make a DataArray ----------------------------------------------------
        # var_names = ['cloud_fraction', 'temp_11_0um', 'refl_0_65um']
        # dims = ['num_params', 'y', 'x']
        # da = xr.DataArray(np.stack([cld_frac_out, bt, refl], axis=0), dims=dims)
        # da.assign_coords({
        #     'num_params': var_names,
        #     'lat': (['y', 'x'], lats),
        #     'lon': (['y', 'x'], lons)
        # })
        # ---------------------------------------------------------------------------

        h5f.close()

        if out_file is not None:
            np.save(out_file, (cld_frac_out, bt, refl, cp))
        else:
            # return [cld_frac_out, bt, refl, cp, lons, lats]
            return cld_frac_out

    def run_inference_full_disk(self, in_file, out_file):
        gc.collect()

        t0 = time.time()
        h5f = h5py.File(in_file, 'r')

        bt = get_grid_values_all(h5f, 'temp_11_0um_nom')
        y_len, x_len = bt.shape
        h_y_len = int(y_len / 2)
        refl = get_grid_values_all(h5f, 'refl_0_65um_nom')
        refl_lo = get_grid_values_all(h5f, 'refl_0_65um_nom_min_sub')
        refl_hi = get_grid_values_all(h5f, 'refl_0_65um_nom_max_sub')
        refl_std = get_grid_values_all(h5f, 'refl_0_65um_nom_stddev_sub')
        cp = get_grid_values_all(h5f, label_param)
        t1 = time.time()
        print('   read time:', (t1-t0))

        bt_nh = bt[0:h_y_len + 1, :]
        refl_nh = refl[0:h_y_len + 1, :]
        refl_lo_nh = refl_lo[0:h_y_len + 1, :]
        refl_hi_nh = refl_hi[0:h_y_len + 1, :]
        refl_std_nh = refl_std[0:h_y_len + 1, :]
        cp_nh = cp[0:h_y_len + 1, :]

        bt_sh = bt[h_y_len - 1:y_len, :]
        refl_sh = refl[h_y_len - 1:y_len, :]
        refl_lo_sh = refl_lo[h_y_len - 1:y_len, :]
        refl_hi_sh = refl_hi[h_y_len - 1:y_len, :]
        refl_std_sh = refl_std[h_y_len - 1:y_len, :]
        cp_sh = cp[h_y_len - 1:y_len, :]

        t0 = time.time()
        cld_frac_nh = self.run_inference_(bt_nh, refl_nh, refl_lo_nh, refl_hi_nh, refl_std_nh, cp_nh)
        cld_frac_sh = self.run_inference_(bt_sh, refl_sh, refl_lo_sh, refl_hi_sh, refl_std_sh, cp_sh)
        t1 = time.time()
        print('   inference time: ', (t1-t0))

        cld_frac_out = np.zeros((y_len, x_len), dtype=np.int8)
        border = int((KERNEL_SIZE - 1) / 2)
        cld_frac_out[border:h_y_len, border:x_len - border] = cld_frac_nh[0, :, :]
        cld_frac_out[h_y_len:y_len - border, border:x_len - border] = cld_frac_sh[0, :, :]

        # Use this hack for now.
        off_earth = (bt <= 161.0)
        night = np.isnan(refl)
        cld_frac_out[off_earth] = -1
        cld_frac_out[np.invert(off_earth) & night] = -1

        # ---   Make DataArray -------------------------------------------------
        # var_names = ['cloud_fraction', 'temp_11_0um', 'refl_0_65um']
        # dims = ['num_params', 'y', 'x']
        # da = xr.DataArray(np.stack([cld_frac_out, bt, refl], axis=0), dims=dims)
        # da.assign_coords({
        #     'num_params': var_names,
        #     'lat': (['y', 'x'], lats),
        #     'lon': (['y', 'x'], lons)
        # })
        # ------------------------------------------------------------------------

        h5f.close()

        if out_file is not None:
            np.save(out_file, (cld_frac_out, bt, refl, cp))
        else:
            # return [cld_frac_out, bt, refl, cp, lons, lats]
            return cld_frac_out

    def run_inference_(self, bt, refl, refl_lo, refl_hi, refl_std, cp):
        bt = normalize(bt, 'temp_11_0um_nom', mean_std_dct)
        refl = normalize(refl, 'refl_0_65um_nom', mean_std_dct)
        refl_lo = normalize(refl_lo, 'refl_0_65um_nom', mean_std_dct)
        refl_hi = normalize(refl_hi, 'refl_0_65um_nom', mean_std_dct)
        refl_std = np.where(np.isnan(refl_std), 0, refl_std)
        cp = np.where(np.isnan(cp), 0, cp)

        data = np.stack([bt, refl, refl_lo, refl_hi, refl_std, cp], axis=2)
        data = np.expand_dims(data, axis=0)
        probs = self.do_inference(data)
        cld_frac = probs.argmax(axis=3)
        cld_frac = cld_frac.astype(np.int8)

        return cld_frac


def run_restore_static(directory, ckpt_dir, out_file=None):
    nn = SRCNN()
    labels, cat_cld_frac, preds, inputs = nn.run_restore(directory, ckpt_dir)
    print(np.histogram(labels))
    print(np.histogram(preds))
    if out_file is not None:
        y_hi, x_hi = (Y_LEN // 4) + 1, (X_LEN // 4) + 1
        np.save(out_file,
                [labels[:, :, :, 0], preds[:, :, :, 0],
                 inputs[:, 1:y_hi, 1:x_hi, 0],
                 descale(inputs[:, 1:y_hi, 1:x_hi, 1], 'refl_0_65um_nom', mean_std_dct),
                 descale(inputs[:, 1:y_hi, 1:x_hi, 2], 'refl_0_65um_nom', mean_std_dct),
                 inputs[:, 1:y_hi, 1:x_hi, 3],
                 descale(inputs[:, 1:y_hi, 1:x_hi, 4], label_param, mean_std_dct),
                 cat_cld_frac[:, :, :]])


def run_evaluate_static(in_file, out_file, ckpt_dir):
    gc.collect()

    h5f = h5py.File(in_file, 'r')

    bt = get_grid_values_all(h5f, 'temp_11_0um_nom')
    y_len, x_len = bt.shape
    refl = get_grid_values_all(h5f, 'refl_0_65um_nom')
    refl_lo = get_grid_values_all(h5f, 'refl_0_65um_nom_min_sub')
    refl_hi = get_grid_values_all(h5f, 'refl_0_65um_nom_max_sub')
    refl_std = get_grid_values_all(h5f, 'refl_0_65um_nom_stddev_sub')
    cp = get_grid_values_all(h5f, label_param)
    # lons = get_grid_values_all(h5f, 'longitude')
    # lats = get_grid_values_all(h5f, 'latitude')

    cld_frac = run_evaluate_static_(bt, refl, refl_lo, refl_hi, refl_std, cp, ckpt_dir)

    cld_frac_out = np.zeros((y_len, x_len), dtype=np.int8)
    border = int((KERNEL_SIZE - 1)/2)
    cld_frac_out[border:y_len-border, border:x_len - border] = cld_frac[0, :, :]

    # Use this hack for now.
    off_earth = (bt <= 161.0)
    night = np.isnan(refl)
    cld_frac_out[off_earth] = -1
    cld_frac_out[np.invert(off_earth) & night] = -1

    # ---  Make a DataArray ----------------------------------------------------
    # var_names = ['cloud_fraction', 'temp_11_0um', 'refl_0_65um']
    # dims = ['num_params', 'y', 'x']
    # da = xr.DataArray(np.stack([cld_frac_out, bt, refl], axis=0), dims=dims)
    # da.assign_coords({
    #     'num_params': var_names,
    #     'lat': (['y', 'x'], lats),
    #     'lon': (['y', 'x'], lons)
    # })
    # ---------------------------------------------------------------------------

    h5f.close()

    if out_file is not None:
        np.save(out_file, (cld_frac_out, bt, refl, cp))
    else:
        # return [cld_frac_out, bt, refl, cp, lons, lats]
        return cld_frac_out


def run_evaluate_static_full_disk(in_file, out_file, ckpt_dir):
    gc.collect()

    h5f = h5py.File(in_file, 'r')

    bt = get_grid_values_all(h5f, 'temp_11_0um_nom')
    y_len, x_len = bt.shape
    h_y_len = int(y_len/2)
    refl = get_grid_values_all(h5f, 'refl_0_65um_nom')
    refl_lo = get_grid_values_all(h5f, 'refl_0_65um_nom_min_sub')
    refl_hi = get_grid_values_all(h5f, 'refl_0_65um_nom_max_sub')
    refl_std = get_grid_values_all(h5f, 'refl_0_65um_nom_stddev_sub')
    cp = get_grid_values_all(h5f, label_param)
    # lons = get_grid_values_all(h5f, 'longitude')
    # lats = get_grid_values_all(h5f, 'latitude')

    bt_nh = bt[0:h_y_len+1, :]
    refl_nh = refl[0:h_y_len+1, :]
    refl_lo_nh = refl_lo[0:h_y_len+1, :]
    refl_hi_nh = refl_hi[0:h_y_len+1, :]
    refl_std_nh = refl_std[0:h_y_len+1, :]
    cp_nh = cp[0:h_y_len+1, :]

    bt_sh = bt[h_y_len-1:y_len, :]
    refl_sh = refl[h_y_len-1:y_len, :]
    refl_lo_sh = refl_lo[h_y_len-1:y_len, :]
    refl_hi_sh = refl_hi[h_y_len-1:y_len, :]
    refl_std_sh = refl_std[h_y_len-1:y_len, :]
    cp_sh = cp[h_y_len-1:y_len, :]

    cld_frac_nh = run_evaluate_static_(bt_nh, refl_nh, refl_lo_nh, refl_hi_nh, refl_std_nh, cp_nh, ckpt_dir)

    cld_frac_sh = run_evaluate_static_(bt_sh, refl_sh, refl_lo_sh, refl_hi_sh, refl_std_sh, cp_sh, ckpt_dir)

    cld_frac_out = np.zeros((y_len, x_len), dtype=np.int8)
    border = int((KERNEL_SIZE - 1)/2)
    cld_frac_out[border:h_y_len, border:x_len - border] = cld_frac_nh[0, :, :]
    cld_frac_out[h_y_len:y_len - border, border:x_len - border] = cld_frac_sh[0, :, :]

    # Use this hack for now.
    off_earth = (bt <= 161.0)
    night = np.isnan(refl)
    cld_frac_out[off_earth] = -1
    cld_frac_out[np.invert(off_earth) & night] = -1

    # ---   Make DataArray -------------------------------------------------
    # var_names = ['cloud_fraction', 'temp_11_0um', 'refl_0_65um']
    # dims = ['num_params', 'y', 'x']
    # da = xr.DataArray(np.stack([cld_frac_out, bt, refl], axis=0), dims=dims)
    # da.assign_coords({
    #     'num_params': var_names,
    #     'lat': (['y', 'x'], lats),
    #     'lon': (['y', 'x'], lons)
    # })
    # ------------------------------------------------------------------------

    h5f.close()

    if out_file is not None:
        np.save(out_file, (cld_frac_out, bt, refl, cp))
    else:
        # return [cld_frac_out, bt, refl, cp, lons, lats]
        return cld_frac_out


def run_evaluate_static_valid(in_file, out_file, ckpt_dir):
    gc.collect()

    h5f = h5py.File(in_file, 'r')

    bt = get_grid_values_all(h5f, 'orig/temp_ch38')
    y_len, x_len = bt.shape
    refl = get_grid_values_all(h5f, 'orig/refl_ch01')
    refl_lo = get_grid_values_all(h5f, 'orig/refl_submin_ch01')
    refl_hi = get_grid_values_all(h5f, 'orig/refl_submax_ch01')
    refl_std = get_grid_values_all(h5f, 'orig/refl_substddev_ch01')
    cp = get_grid_values_all(h5f, 'orig/'+label_param)
    lons = get_grid_values_all(h5f, 'orig/longitude')
    lats = get_grid_values_all(h5f, 'orig/latitude')
    cp_sres = get_grid_values_all(h5f, 'super/'+label_param)

    mean_cp_sres = get_grid_cell_mean(np.expand_dims(cp_sres, axis=0))[0]
    # cld_frac_truth = get_label_data_5cat(np.expand_dims(cp_sres, axis=0))[0]
    cld_frac_truth = None

    h5f.close()

    cld_frac = run_evaluate_static_(bt, refl, refl_lo, refl_hi, refl_std, cp, ckpt_dir)

    cld_frac_out = np.zeros((y_len, x_len), dtype=np.int8)
    border = int((KERNEL_SIZE - 1)/2)
    cld_frac_out[border:y_len-border, border:x_len - border] = cld_frac[0, :, :]

    var_names = ['cloud_fraction', 'temp_11_0um', 'refl_0_65um']
    dims = ['num_params', 'y', 'x']
    da = xr.DataArray(np.stack([cld_frac_out, bt, refl], axis=0), dims=dims)
    da.assign_coords({
        'num_params': var_names,
        'lat': (['y', 'x'], lats),
        'lon': (['y', 'x'], lons)
    })

    if out_file is not None:
        np.save(out_file, (cld_frac_out, bt, refl, cp, lons, lats, mean_cp_sres, cld_frac_truth))
    else:
        return [cld_frac_out, bt, refl, cp, lons, lats]


def run_evaluate_static_(bt, refl, refl_lo, refl_hi, refl_std, cp, ckpt_dir):
    bt = normalize(bt, 'temp_11_0um_nom', mean_std_dct)
    refl = normalize(refl, 'refl_0_65um_nom', mean_std_dct)
    refl_lo = normalize(refl_lo, 'refl_0_65um_nom', mean_std_dct)
    refl_hi = normalize(refl_hi, 'refl_0_65um_nom', mean_std_dct)
    refl_std = np.where(np.isnan(refl_std), 0, refl_std)
    cp = np.where(np.isnan(cp), 0, cp)

    data = np.stack([bt, refl, refl_lo, refl_hi, refl_std, cp], axis=2)
    data = np.expand_dims(data, axis=0)
    nn = SRCNN()
    probs = nn.run_evaluate(data, ckpt_dir)
    cld_frac = probs.argmax(axis=3)
    cld_frac = cld_frac.astype(np.int8)

    return cld_frac


def analyze_3cat(file):

    tup = np.load(file, allow_pickle=True)
    lbls = tup[0]
    pred = tup[1]

    lbls = lbls.flatten()
    pred = pred.flatten()
    print(np.sum(lbls == 0), np.sum(lbls == 1), np.sum(lbls == 2))

    msk_0_1 = lbls != 2
    msk_1_2 = lbls != 0
    msk_0_2 = lbls != 1

    lbls_0_1 = lbls[msk_0_1]

    pred_0_1 = pred[msk_0_1]
    pred_0_1 = np.where(pred_0_1 == 2, 1, pred_0_1)

    # ----
    lbls_1_2 = lbls[msk_1_2]
    lbls_1_2 = np.where(lbls_1_2 == 1, 0, lbls_1_2)
    lbls_1_2 = np.where(lbls_1_2 == 2, 1, lbls_1_2)

    pred_1_2 = pred[msk_1_2]
    pred_1_2 = np.where(pred_1_2 == 0, -9, pred_1_2)
    pred_1_2 = np.where(pred_1_2 == 1, 0, pred_1_2)
    pred_1_2 = np.where(pred_1_2 == 2, 1, pred_1_2)
    pred_1_2 = np.where(pred_1_2 == -9, 1, pred_1_2)

    # ----
    lbls_0_2 = lbls[msk_0_2]
    lbls_0_2 = np.where(lbls_0_2 == 2, 1, lbls_0_2)

    pred_0_2 = pred[msk_0_2]
    pred_0_2 = np.where(pred_0_2 == 2, 1, pred_0_2)

    cm_0_1 = confusion_matrix_values(lbls_0_1, pred_0_1)
    cm_1_2 = confusion_matrix_values(lbls_1_2, pred_1_2)
    cm_0_2 = confusion_matrix_values(lbls_0_2, pred_0_2)

    true_0_1 = (lbls_0_1 == 0) & (pred_0_1 == 0)
    false_0_1 = (lbls_0_1 == 1) & (pred_0_1 == 0)

    true_no_0_1 = (lbls_0_1 == 1) & (pred_0_1 == 1)
    false_no_0_1 = (lbls_0_1 == 0) & (pred_0_1 == 1)

    true_0_2 = (lbls_0_2 == 0) & (pred_0_2 == 0)
    false_0_2 = (lbls_0_2 == 1) & (pred_0_2 == 0)

    true_no_0_2 = (lbls_0_2 == 1) & (pred_0_2 == 1)
    false_no_0_2 = (lbls_0_2 == 0) & (pred_0_2 == 1)

    true_1_2 = (lbls_1_2 == 0) & (pred_1_2 == 0)
    false_1_2 = (lbls_1_2 == 1) & (pred_1_2 == 0)

    true_no_1_2 = (lbls_1_2 == 1) & (pred_1_2 == 1)
    false_no_1_2 = (lbls_1_2 == 0) & (pred_1_2 == 1)

    tp_0 = np.sum(true_0_1).astype(np.float64)
    tp_1 = np.sum(true_1_2).astype(np.float64)
    tp_2 = np.sum(true_0_2).astype(np.float64)

    tn_0 = np.sum(true_no_0_1).astype(np.float64)
    tn_1 = np.sum(true_no_1_2).astype(np.float64)
    tn_2 = np.sum(true_no_0_2).astype(np.float64)

    fp_0 = np.sum(false_0_1).astype(np.float64)
    fp_1 = np.sum(false_1_2).astype(np.float64)
    fp_2 = np.sum(false_0_2).astype(np.float64)

    fn_0 = np.sum(false_no_0_1).astype(np.float64)
    fn_1 = np.sum(false_no_1_2).astype(np.float64)
    fn_2 = np.sum(false_no_0_2).astype(np.float64)

    recall_0 = tp_0 / (tp_0 + fn_0)
    recall_1 = tp_1 / (tp_1 + fn_1)
    recall_2 = tp_2 / (tp_2 + fn_2)

    precision_0 = tp_0 / (tp_0 + fp_0)
    precision_1 = tp_1 / (tp_1 + fp_1)
    precision_2 = tp_2 / (tp_2 + fp_2)

    mcc_0 = ((tp_0 * tn_0) - (fp_0 * fn_0)) / np.sqrt((tp_0 + fp_0) * (tp_0 + fn_0) * (tn_0 + fp_0) * (tn_0 + fn_0))
    mcc_1 = ((tp_1 * tn_1) - (fp_1 * fn_1)) / np.sqrt((tp_1 + fp_1) * (tp_1 + fn_1) * (tn_1 + fp_1) * (tn_1 + fn_1))
    mcc_2 = ((tp_2 * tn_2) - (fp_2 * fn_2)) / np.sqrt((tp_2 + fp_2) * (tp_2 + fn_2) * (tn_2 + fp_2) * (tn_2 + fn_2))

    acc_0 = np.sum(lbls_0_1 == pred_0_1)/pred_0_1.size
    acc_1 = np.sum(lbls_1_2 == pred_1_2)/pred_1_2.size
    acc_2 = np.sum(lbls_0_2 == pred_0_2)/pred_0_2.size

    print(acc_0, recall_0, precision_0, mcc_0)
    print(acc_1, recall_1, precision_1, mcc_1)
    print(acc_2, recall_2, precision_2, mcc_2)

    return cm_0_1, cm_1_2, cm_0_2, [acc_0, acc_1, acc_2], [recall_0, recall_1, recall_2],\
        [precision_0, precision_1, precision_2], [mcc_0, mcc_1, mcc_2]


def analyze_5cat(file):

    tup = np.load(file, allow_pickle=True)
    lbls = tup[0]
    pred = tup[1]

    lbls = lbls.flatten()
    pred = pred.flatten()
    np.histogram(lbls, bins=5)
    np.histogram(pred, bins=5)

    new_lbls = np.zeros(lbls.size, dtype=np.int32)
    new_pred = np.zeros(pred.size, dtype=np.int32)

    new_lbls[lbls == 0] = 0
    new_lbls[lbls == 1] = 1
    new_lbls[lbls == 2] = 1
    new_lbls[lbls == 3] = 1
    new_lbls[lbls == 4] = 2

    new_pred[pred == 0] = 0
    new_pred[pred == 1] = 1
    new_pred[pred == 2] = 1
    new_pred[pred == 3] = 1
    new_pred[pred == 4] = 2

    np.histogram(new_lbls, bins=3)
    np.histogram(new_pred, bins=3)

    lbls = new_lbls
    pred = new_pred

    print(np.sum(lbls == 0), np.sum(lbls == 1), np.sum(lbls == 2))

    msk_0_1 = lbls != 2
    msk_1_2 = lbls != 0
    msk_0_2 = lbls != 1

    lbls_0_1 = lbls[msk_0_1]

    pred_0_1 = pred[msk_0_1]
    pred_0_1 = np.where(pred_0_1 == 2, 1, pred_0_1)

    # ----------------------------------------------
    lbls_1_2 = lbls[msk_1_2]
    lbls_1_2 = np.where(lbls_1_2 == 1, 0, lbls_1_2)
    lbls_1_2 = np.where(lbls_1_2 == 2, 1, lbls_1_2)

    pred_1_2 = pred[msk_1_2]
    pred_1_2 = np.where(pred_1_2 == 0, -9, pred_1_2)
    pred_1_2 = np.where(pred_1_2 == 1, 0, pred_1_2)
    pred_1_2 = np.where(pred_1_2 == 2, 1, pred_1_2)
    pred_1_2 = np.where(pred_1_2 == -9, 1, pred_1_2)

    # -----------------------------------------------
    lbls_0_2 = lbls[msk_0_2]
    lbls_0_2 = np.where(lbls_0_2 == 2, 1, lbls_0_2)

    pred_0_2 = pred[msk_0_2]
    pred_0_2 = np.where(pred_0_2 == 2, 1, pred_0_2)

    cm_0_1 = confusion_matrix_values(lbls_0_1, pred_0_1)
    cm_1_2 = confusion_matrix_values(lbls_1_2, pred_1_2)
    cm_0_2 = confusion_matrix_values(lbls_0_2, pred_0_2)

    true_0_1 = (lbls_0_1 == 0) & (pred_0_1 == 0)
    false_0_1 = (lbls_0_1 == 1) & (pred_0_1 == 0)

    true_no_0_1 = (lbls_0_1 == 1) & (pred_0_1 == 1)
    false_no_0_1 = (lbls_0_1 == 0) & (pred_0_1 == 1)

    true_0_2 = (lbls_0_2 == 0) & (pred_0_2 == 0)
    false_0_2 = (lbls_0_2 == 1) & (pred_0_2 == 0)

    true_no_0_2 = (lbls_0_2 == 1) & (pred_0_2 == 1)
    false_no_0_2 = (lbls_0_2 == 0) & (pred_0_2 == 1)

    true_1_2 = (lbls_1_2 == 0) & (pred_1_2 == 0)
    false_1_2 = (lbls_1_2 == 1) & (pred_1_2 == 0)

    true_no_1_2 = (lbls_1_2 == 1) & (pred_1_2 == 1)
    false_no_1_2 = (lbls_1_2 == 0) & (pred_1_2 == 1)

    tp_0 = np.sum(true_0_1).astype(np.float64)
    tp_1 = np.sum(true_1_2).astype(np.float64)
    tp_2 = np.sum(true_0_2).astype(np.float64)

    tn_0 = np.sum(true_no_0_1).astype(np.float64)
    tn_1 = np.sum(true_no_1_2).astype(np.float64)
    tn_2 = np.sum(true_no_0_2).astype(np.float64)

    fp_0 = np.sum(false_0_1).astype(np.float64)
    fp_1 = np.sum(false_1_2).astype(np.float64)
    fp_2 = np.sum(false_0_2).astype(np.float64)

    fn_0 = np.sum(false_no_0_1).astype(np.float64)
    fn_1 = np.sum(false_no_1_2).astype(np.float64)
    fn_2 = np.sum(false_no_0_2).astype(np.float64)

    recall_0 = tp_0 / (tp_0 + fn_0)
    recall_1 = tp_1 / (tp_1 + fn_1)
    recall_2 = tp_2 / (tp_2 + fn_2)

    precision_0 = tp_0 / (tp_0 + fp_0)
    precision_1 = tp_1 / (tp_1 + fp_1)
    precision_2 = tp_2 / (tp_2 + fp_2)

    mcc_0 = ((tp_0 * tn_0) - (fp_0 * fn_0)) / np.sqrt((tp_0 + fp_0) * (tp_0 + fn_0) * (tn_0 + fp_0) * (tn_0 + fn_0))
    mcc_1 = ((tp_1 * tn_1) - (fp_1 * fn_1)) / np.sqrt((tp_1 + fp_1) * (tp_1 + fn_1) * (tn_1 + fp_1) * (tn_1 + fn_1))
    mcc_2 = ((tp_2 * tn_2) - (fp_2 * fn_2)) / np.sqrt((tp_2 + fp_2) * (tp_2 + fn_2) * (tn_2 + fp_2) * (tn_2 + fn_2))

    acc_0 = np.sum(lbls_0_1 == pred_0_1)/pred_0_1.size
    acc_1 = np.sum(lbls_1_2 == pred_1_2)/pred_1_2.size
    acc_2 = np.sum(lbls_0_2 == pred_0_2)/pred_0_2.size

    print(acc_0, recall_0, precision_0, mcc_0)
    print(acc_1, recall_1, precision_1, mcc_1)
    print(acc_2, recall_2, precision_2, mcc_2)

    return cm_0_1, cm_1_2, cm_0_2, [acc_0, acc_1, acc_2], [recall_0, recall_1, recall_2],\
        [precision_0, precision_1, precision_2], [mcc_0, mcc_1, mcc_2], lbls, pred


if __name__ == "__main__":
    nn = SRCNN()
    nn.run('matchup_filename')