"tests/git@gitlab.ssec.wisc.edu:pveglio/mvcm.git" did not exist on "c1e58ef2af0479950de92d3311bafc1aa35eb4ea"
Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
goesr.l1b
=========
PURPOSE
Toolbox for extracting imagery from GOES-16 PUG L1B NetCDF4 files
originally goesr_pug.py as part of SIFT.
REFERENCES
GOES-R Product User's Guide Rev E
REQUIRES
numpy
netCDF4
:author: R.K.Garcia <rayg@ssec.wisc.edu>
:copyright: 2016 by University of Wisconsin Regents, see AUTHORS for more details
:license: GPLv3, see LICENSE for more details
"""
import os, sys
import logging, unittest, argparse
from collections import namedtuple
import numpy as np
# import numba
# from numba.decorators import jit
import re
from datetime import datetime, timedelta
import netCDF4 as nc4
__author__ = 'rayg'
__docformat__ = 'reStructuredText'
LOG = logging.getLogger(__name__)
# default variable names for PUG L1b files
DEFAULT_RADIANCE_VAR_NAME = 'Rad'
DEFAULT_CMI_VAR_NAME = 'CMI'
DEFAULT_Y_CENTER_VAR_NAME = 'y_image'
DEFAULT_X_CENTER_VAR_NAME = 'x_image'
geolocation = namedtuple('geolocation', ['lat', 'lon'])
# ref https://gitlab.ssec.wisc.edu/scottm/QL_package/blob/master/cspp_ql/geo_proj.py
def proj4_params(longitude_of_projection_origin=0.0, perspective_point_height=0.0,
semi_major_axis=0.0, semi_minor_axis=0.0,
sweep_angle_axis='x', latitude_of_projection_origin=0.0, y_0=0, x_0=0, **etc):
"""
Generate PROJ.4 parameters for Fixed Grid projection
:param longitude_of_projection_origin: longitude at center of projection, related to sub-satellite point
:param perspective_point_height: effective projection height in m
:param semi_major_axis: ellipsoid semi-major axis in m
:param semi_minor_axis: ellipsoid semi-minor axis in m
:param sweep_angle_axis: 'x' for GOES-R, 'y' for original CGMS
:param y_0:
:param x_0:
:return: tuple of (key,value) pairs
"""
assert(latitude_of_projection_origin==0.0) # assert your assumptions: need to revisit this routine if this is not the case
return (('proj', 'geos'),
('lon_0', longitude_of_projection_origin),
('h', perspective_point_height),
('a', semi_major_axis),
('b', semi_minor_axis),
('x_0', x_0),
('y_0', y_0),
('sweep', sweep_angle_axis),
('units', 'm'),
# ('ellps', 'GRS80'), # redundant given +a and +b, PUG states GRS80 and not WGS84
)
def proj4_string(**kwargs):
"""
see proj4_params()
"""
p4p = proj4_params(**kwargs)
return ' '.join( ('+%s=%s' % q) for q in p4p )
# return '+proj=geos +sweep=x +lon_0=%f +h=%f +x_0=%d +y_0=%d +a=%f +b=%f +units=m +ellps=GRS80' % (
# lon_center_of_projection,
# perspective_point_height,
# x_plus,
# y_plus,
# semi_major_axis,
# semi_minor_axis
# )
# @jit((numba.float32[:,:], numba.double, numba.double, numba.double, numba.double))
def _calc_bt(L: np.ndarray, fk1: float, fk2: float, bc1: float, bc2: float):
return (fk2 / np.log((fk1 / L) + 1.0) - bc1) / bc2
def calc_bt(L: (np.ndarray, np.ma.masked_array), fk1: float, fk2: float, bc1: float, bc2: float, mask_invalid: bool=True, **etc):
"""
convert brightness temperature bands from radiance
ref PUG Vol4 7.1.3.1 Radiances Product : Description
Note: marginally negative radiances can occur and will result in NaN values!
We handle this by setting anything with radiance <=0.0 to return 0K
:param L: raw radiance image data, preferably as masked array
:param fk1: calibration constant
:param fk2: calibration constant
:param bc1: calibration constant
:param bc2: calibration constant
:param mask_invalid: bool, whether to include radiances <=0.0 in array mask - iff Lis masked array
:return: BT converted radiance data, K; if input is masked_array, L<=0.0 will also be masked
"""
T = _calc_bt(L, fk1, fk2, bc1, bc2)
if isinstance(L, np.ma.masked_array):
if mask_invalid:
T = np.ma.masked_array(T, (L.data <= 0.0) | L.mask)
else:
T = np.ma.masked_array(T, L.mask)
else:
# Tmin = -bc1 / bc2 # when L<=0
T[L <= 0.0] = 0.0 # Tmin, but for now truncate to absolute 0
return T
# @jit((numba.float32[:,:], numba.double))
# def _calc_refl(L, kappa0):
# return L * kappa0
def calc_refl(L: np.ndarray, kappa0: float, **etc):
"""
convert reflectance bands from radiance
ref PUG Vol4 7.1.3.1 Radiances Product : Description
:param L: raw radiance image data as masked array
:param kappa0: conversion factor radiance to reflectance
:return:
"""
return L * kappa0
# if isinstance(L, np.ma.masked_array):
# refl = _calc_refl(L.data, kappa0)
# return np.ma.masked_array(refl, L.mask)
# return _calc_refl(L, kappa0)
def is_band_refl_or_bt(band: int):
"""
:param band: band number, 1..16
:return: "refl", "bt" or None
"""
return 'refl' if (1 <= band <= 6) else 'bt' if (7 <= band <= 16) else None
def nc_cal_values(nc: nc4.Dataset):
"""
extract a dictionary of calibration parameters to use
:param nc: PUG netCDF4 instance
:return: dict
"""
# grab = lambda x: x.filled(np.NAN)[...] if isinstance(x, np.ma.masked_array) else x[...]
grab = lambda vn: np.ma.fix_invalid(nc[vn][:], fill_value=np.NAN)[...]
return {
'fk1': grab('planck_fk1'), # nc['planck_fk1'][:].filled(np.NAN)[...],
'fk2': grab('planck_fk2'), # nc['planck_fk2'][:].filled(np.NAN)[...],
'bc1': grab('planck_bc1'), # nc['planck_bc1'][:].filled(np.NAN)[...],
'bc2': grab('planck_bc2'), # nc['planck_bc2'][:].filled(np.NAN)[...],
'kappa0': grab('kappa0'), # nc['kappa0'][:].filled(np.NAN)[...]
}
def nc_nav_values(nc, primary_var_name: str=None,
proj_var_name: str=None,
y_image_var_name: str=DEFAULT_Y_CENTER_VAR_NAME,
x_image_var_name: str=DEFAULT_X_CENTER_VAR_NAME):
"""
extract a dictionary of navigation parameters to use
:param primary_var_name: radiance variable name to follow .grid_mapping of, optional with default
:param proj_var_name: alternately, projection variable to fetch parameters from
:param y_image_var_name: variable holding center of image in FGF y/x radiance, if available
:param x_image_var_name: variable holding center of image in FGF y/x radiance, if available
:param nc: PUG netCDF4 instance
:return: dict
FUTURE: distinguish navigation from projection
"""
if proj_var_name is None:
v = nc.variables.get(primary_var_name or DEFAULT_RADIANCE_VAR_NAME, None)
if v is not None:
a = getattr(v, 'grid_mapping', None)
if a is not None:
proj_var_name = a
if proj_var_name is None:
raise ValueError('unknown projection variable to read')
proj = nc[proj_var_name]
nav = dict((name, getattr(proj, name, None)) for name in (
'grid_mapping_name', 'perspective_point_height', 'semi_major_axis', 'semi_minor_axis',
'inverse_flattening', 'latitude_of_projection_origin', 'longitude_of_projection_origin', 'sweep_angle_axis'))
# x_0, y_0 = 0, 0
# false easting / false northing
# if y_image_var_name in nc.variables.keys():
# y_0 = float(nc[y_image_var_name][:]) * nav['perspective_point_height'] # convert to nadir-meter for proj4
# if x_image_var_name in nc.variables.keys():
# x_0 = float(nc[x_image_var_name][:]) * nav['perspective_point_height']
# nav['y_0'], nav['x_0'] = y_0, x_0
return nav
def nc_y_x_names(nc, primary_var_name: str=None):
"""
read .coordinates from variable to get names of y and x variables
note that PUG files may have multiple named coordinate variables for band/time preceding
:param nc: netcdf file
:param primary_var_name: variable of interest, typically DEFAULT_RADIANCE_VAR_NAME or DEFAULT_CMI_VAR_NAME
:return:
"""
v = nc.variables.get(primary_var_name or DEFAULT_RADIANCE_VAR_NAME, None)
c = v.coordinates.split()
return c[-2:]
RE_PUG_ISO = re.compile(r'(\d{4})-(\d\d)-(\d\d)T(\d\d):(\d\d):(\d\d)\.(\d+)Z')
def timecode_to_datetime(iso):
m = RE_PUG_ISO.match(iso.strip())
nums = list(m.groups())
nums[6] += '0' * max(0,6-len(nums[6])) # .9 -> 900000µs
yyyy, mm, dd, h, m, s, t = map(int, nums)
return datetime(yyyy, mm, dd, h, m, s, t)
DEFAULT_SNAP_SECONDS = 60
SNAP_SECONDS = {'Full Disk': 5*60,
'Mesoscale': 15,
}
def snap_scene_onto_schedule(start: datetime, end: datetime, scene_id: str=None, timeline_id: str=None):
"""
assign a "timeline" time to an image by looking at its coverage
currently this is done by taking the center time and dropping it to the previous
:param start: datetime object, time_coverage_start
:param end: datetime
:param scene_id: string, typically 'Full Disk'
:param timeline_id: instrument mode, typically "Mode 3" or "Mode 4"
:return: datetime of 'timeline' time
"""
c = start # + (end - start)/2
b = datetime(c.year, c.month, c.day, c.hour)
d = (c - b).total_seconds() # seconds within hour of image start time
sns = SNAP_SECONDS.get(scene_id.strip(), DEFAULT_SNAP_SECONDS) # resolution to snap to
d = int(d) - (int(d) % sns)
m = b + timedelta(seconds=d)
return m
def resolution_from_attr(spatial_resolution: str):
return {'4km at nadir': 4000,
'4.0km at nadir': 4000,
'2km at nadir': 2000,
'2.0km at nadir': 2000,
'1km at nadir': 1000,
'1.0km at nadir': 1000,
'500m at nadir': 500,
'0.5km at nadir': 500,}[spatial_resolution]
def mode_from_timeline_id(timeline_id):
m = re.match(r'ABI Mode (\d+)', timeline_id)
return int(m.group(1))
def scene_from_dataset_name(dataset_name):
"""
M1, M2, F, C, or None
"""
m = re.search(r'-(?:CMIP|Rad)(\w+)-M', dataset_name or "")
return None if m is None else m.group(1)
class PugFile(object):
"""
PUG helper routines for a single band, given a single-band NetCDF4 file
or a multi-band NetCDF4 file and an offset in the band dimension
"""
path = None # file or glob used to access this data
nc = None # if we opened the file for you, it's here
_band_offset = None
band = None # band number
central_wavelength = None # um
platform_id = None # platform_ID as string
sched_time = None # datetime object, nominal/normalized/snapped time of the image onto a 1min/5min/10min/15min timeline based on mode/scene
time_span = None # (start,end) datetime pair
timeline_id = None # string, instrument mode
bit_depth = None # bit depth
shape_m = None # nadir-meter dy,dx approximation : FUTURE: deprecate this toward cell_size, too confusing vs .shape being whole array
scene_id = None # string, type of scene e.g. "Full Disk"
resolution = None # approximate nadir meters: 500, 1000, 2000, 4000
display_time = None # str form of timeline YYYY-mm-dd HH:MM
display_name = None # str form of platform + scene + band
instrument_type = None # long identifier for instrument
instrument_name = None # ABI, AHI, AMI, etc
cal = None # dictionary of cal parameters, only present on l1b files
nav = None # dictionary of nav parameters
shape = None # (lines, elements)
primary_var_name = None # Rad or CMI variable to focus on
@property
def bt_or_refl(self):
return is_band_refl_or_bt(self.band)
@property
def kind(self):
return self.bt_or_refl
def __init__(self, nc: (nc4.Dataset, str), primary_var_name: str=None, band_offset: int=0):
"""
Initialize cal and nav helper object from a PUG NetCDF4 L1B file.
Can be used as a cal/nav/metadata fetch, or as a file wrapper.
:param nc: netCDF4 Dataset if only metadata is desired; netcdf pathname if file should be opened and retained
:param primary_var_name: radiance variable to convert to BT/Refl
:param band_offset: typically 0, eventually nonzero for multi-band files
"""
# FUTURE: handle band dimension more effectively, including surveying metadata for multi-band files
super(PugFile, self).__init__()
if not isinstance(nc, nc4.Dataset): # then we can open and retain the file for our use
self.path = nc
nc = nc4.Dataset(nc)
self.nc = nc
else:
self.path = nc.filepath()
self.primary_var_name = primary_var_name
primary_var = nc[primary_var_name]
self._band_offset = band_offset
self.band = int(nc['band_id'][band_offset]) # FUTURE: this has a band dimension
self.nav = nc_nav_values(nc, primary_var_name)
self.shape = primary_var.shape[-2:]
self.platform_id = nc.platform_ID
self.instrument_type = nc.instrument_type
self.instrument_name = "ABI" if "Himawari" not in self.instrument_type else "AHI"
self.time_span = st, en = timecode_to_datetime(nc.time_coverage_start), timecode_to_datetime(nc.time_coverage_end)
try:
self.timeline_id = nc.timeline_id
self.mode = mode_from_timeline_id(self.timeline_id)
scene_from_dataset = scene_from_dataset_name(nc.dataset_name)
self.meso_scene = int(scene_from_dataset[1:]) if scene_from_dataset.startswith('M') else None
except AttributeError as probably_himawari:
LOG.warning("no timeline_id; assuming AXI Mode 1 placeholder")
self.timeline_id = "AXI Mode 1 presumed"
self.mode = 1
self.meso_scene = None
raise
self.scene_id = nc.scene_id
self.resolution = resolution_from_attr(nc.spatial_resolution)
self.sched_time = snap_scene_onto_schedule(st, en, self.scene_id, self.timeline_id)
self.display_time = st.strftime('%Y-%m-%d %H:%M:%S')
self.display_name = '{} {} B{:02d} {} {}'.format(
self.platform_id, self.instrument_name,
self.band, self.scene_id, self.display_time)
self.y_var_name, self.x_var_name = nc_y_x_names(nc, self.primary_var_name)
self.bit_depth = nc[self.primary_var_name].sensor_band_bit_depth
self.central_wavelength = nc['band_wavelength'][...] # um
try:
dy, dx = float(nc[self.y_var_name].scale_factor), float(nc[self.x_var_name].scale_factor)
hgt = float(self.nav['perspective_point_height'])
self.shape_m = hgt * dy, hgt * dx
except AttributeError as not_scaled:
LOG.warning('no scale_factor on y and x variables')
pass
@property
def proj4(self):
return proj4_string(**self.nav)
@property
def proj4_params(self):
return proj4_params(**self.nav)
@property
def proj4_string(self):
return proj4_string(**self.nav)
@property
def data(self):
raise NotImplementedError('not implemented in PugFile')
@property
def bt(self):
raise NotImplementedError('not implemented in PugFile')
@property
def refl(self):
raise NotImplementedError('not implemented in PugFile')
@property
def rad(self):
raise NotImplementedError('not implemented in PugFile')
@property
def y(self):
if None is self.nc:
return None
return self.nc[self.y_var_name][:]
@property
def x(self):
if None is self.nc:
return None
return self.nc[self.x_var_name][:]
@property
def yx_center(self):
if None is self.nc:
return None, None
y, x = self.y, self.x
return np.nanmean(y), np.nanmean(x)
# return self.nc['y_image'][...], self.nc['x_image'][...] # GOTCHA: returns projection center, not scene center
@property
def perspective_point_height(self):
return float(self.nav['perspective_point_height'])
@property
def proj_y(self):
"""
projection coordinate as cartesian nadir-meters as used by PROJ.4
ref http://proj4.org/projections/geos.html
scanning_angle (radians) = projection_coordinate / h
"""
return np.require(self.y, dtype=np.float64) * self.perspective_point_height
@property
def proj_x(self):
"""
projection coordinate as cartesian nadir-meters as used by PROJ.4
ref http://proj4.org/projections/geos.html
scanning_angle (radians) = projection_coordinate / h
"""
return np.require(self.x, dtype=np.float64) * self.perspective_point_height
@property
def cell_size(self):
"""
:return: (y, x) nadir-meters nominal size of a cell
"""
return self.shape_m
# if None is self.nc:
# return None, None
# ym = float(self.nc[self.y_var_name].scale_factor)
# xm = float(self.nc[self.x_var_name].scale_factor)
# h = self.perspective_point_height
# return ym * h, xm * h
@property
def origin(self):
"""
:return: (y, x) nadir-meters nominal size of a cell
"""
if None is self.nc:
return None, None
h = self.perspective_point_height
yo, xo = h * self.y[0], h * self.x[0]
return yo, xo
@property
def proj(self):
from pyproj import Proj
return Proj(projparams=dict(self.proj4_params))
@property
def latlon_center(self):
proj = self.proj
h = float(dict(self.proj4_params)['h'])
y, x = self.yx_center # gotcha: gives projection center for meso scenes
lon, lat = proj(x * h, y * h, inverse=True)
return geolocation(lon=lon, lat=lat)
@property
def geo(self):
proj = self.proj
y_m = self.proj_y # nadir-meter
x_m = self.proj_x
w,h = len(x_m), len(y_m)
y = np.broadcast_to(y_m, (w, h)).transpose()
x = np.broadcast_to(x_m, (h, w))
lon, lat = proj(x,y, inverse=True)
return geolocation(lon=lon, lat=lat)
def lat_lon_to_l_c(self, lat, lon, round=True):
"""
convert latitude-longitude all the way back to line-column by reversing projection and y/x scaling
:param lat: latitude value or array in degrees
:param lon: longitude value or array in degrees
:return: line, column array indexed 0..height-1, 0..width-1
"""
proj = self.proj
# convert to nadir-meters using proj4
xm, ym = proj(lon, lat, inverse=False)
# divide out height to get back to projection view angles
h = self.perspective_point_height
y, x = ym / h, xm / h
# extract scale factor and add offset to back out to line-from-0, column-from-0
yvar, xvar = self.nc[self.y_var_name], self.nc[self.x_var_name]
ysf, yao = yvar.scale_factor, yvar.add_offset
xsf, xao = xvar.scale_factor, xvar.add_offset
# reverse scale factor and add offset to get line and column
line, column = (y - yao) / ysf, (x - xao) / xsf
# round to nearest integer
if round:
return np.round(line).astype(np.int32), np.round(column).astype(np.int32)
else: # return floating point values
return line, column
def walk(self, as_cmi=False):
from goesr.rockfall import nc_walk
# LOG.warning("as_cmi band_id dimension not yet implemented")
for pvda in nc_walk(self.nc):
yield pvda
@staticmethod
def attach(path):
basename = os.path.split(path)[-1]
is_l1b = 'L1b-Rad' in basename
return PugL1bTools(path) if is_l1b else PugCmiTools(path)
class PugL1bTools(PugFile):
"""
PUG helper routines for a single band, given a single-band NetCDF4 file
or a multi-band NetCDF4 file and an offset in the band dimension
"""
def __init__(self, nc: (nc4.Dataset, str), primary_var_name: str=DEFAULT_RADIANCE_VAR_NAME, band_offset: int=0):
"""
Initialize cal and nav helper object from a PUG NetCDF4 L1B file.
Can be used as a cal/nav/metadata fetch, or as a file wrapper.
:param nc: netCDF4 Dataset if only metadata is desired; netcdf pathname if file should be opened and retained
:param primary_var_name: radiance variable to convert to BT/Refl
:param band_offset: typically 0, eventually nonzero for multi-band files
"""
owns = False
if not isinstance(nc, nc4.Dataset): # then we can open and retain the file for our use
nc = nc4.Dataset(nc)
owns = True
super(PugL1bTools, self).__init__(nc, primary_var_name, band_offset)
if not owns:
self.nc = None
else:
self.nc = nc
self.cal = nc_cal_values(nc)
def convert_radiances(self, rad):
"""
calculate BT or Refl based on band
:param rad: radiance array from file
:return: ('refl' or 'bt', measurement array, 'K' or '')
"""
kind = self.bt_or_refl
if kind == 'refl':
return kind, calc_refl(rad, **self.cal), ''
elif kind == 'bt':
return kind, calc_bt(rad, **self.cal), 'K'
def convert_from_nc(self, nc: nc4.Dataset=None):
nc = nc or self.nc
if not nc:
raise ValueError('must provide a valid netCDF file')
rad = nc[self.primary_var_name][:]
return self.convert_radiances(rad)
@property
def data(self):
if None is self.nc:
return None
_, measurement_values, _ = self.convert_from_nc(self.nc)
return measurement_values
@property
def bt(self):
if None is self.nc:
return None
if 'bt' == self.bt_or_refl:
return self.convert_from_nc(self.nc)[1]
LOG.warning('cannot request bt from non-emissive band')
return None
@property
def refl(self):
if None is self.nc:
return None
if 'refl' == self.bt_or_refl:
return self.convert_from_nc(self.nc)[1]
LOG.warning('cannot request refl from non-reflectance band')
return None
@property
def rad(self):
if None is self.nc:
return None
return self.nc[self.primary_var_name][:]
class PugCmiTools(PugFile):
"""
PUG helper routines for a single band, given a single-band NetCDF4 file
or a multi-band NetCDF4 file and an offset in the band dimension
"""
def __init__(self, nc: (nc4.Dataset, str), primary_var_name: str=DEFAULT_CMI_VAR_NAME, band_offset: int=0):
"""
Initialize cal and nav helper object from a PUG NetCDF4 L1B file.
Can be used as a cal/nav/metadata fetch, or as a file wrapper.
:param nc: netCDF4 Dataset if only metadata is desired; netcdf pathname if file should be opened and retained
:param primary_var_name: radiance variable to convert to BT/Refl
:param band_offset: typically 0, eventually nonzero for multi-band files
"""
owns = False
if not isinstance(nc, nc4.Dataset): # then we can open and retain the file for our use
nc = nc4.Dataset(nc)
owns = True
super(PugCmiTools, self).__init__(nc, primary_var_name, band_offset)
if not owns:
self.nc = None
else:
self.nc = nc
self.cal = {} # nc_cal_values(nc)
def _data_for_band(self, band_offset=None):
band_offset = band_offset or self._band_offset
ncv = self.nc[self.primary_var_name]
if len(ncv.shape)==3:
return ncv[band_offset,:,:].squeeze()
else:
if band_offset != 0:
raise ValueError("single-band file cannot have band_offset != 0")
return ncv[:,:]
@property
def data(self):
if None is self.nc:
return None
return self._data_for_band()
@property
def bt(self):
if None is self.nc:
return None
if 'bt' == self.bt_or_refl:
return self._data_for_band()
LOG.warning('cannot request bt from non-emissive band')
return None
@property
def refl(self):
if None is self.nc:
return None
if 'refl' == self.bt_or_refl:
return self._data_for_band()
LOG.warning('cannot request refl from non-reflectance band')
return None
@property
def rad(self):
return None
def goesr_to_fbf(filename):
pug = PugFile.attach(filename)
h,w = pug.shape
geo = pug.geo
latitude = np.memmap('latitude.real4.{}.{}'.format(w,h), dtype=np.float32, shape=(h,w), mode='write')
longitude = np.memmap('longitude.real4.{}.{}'.format(w,h), dtype=np.float32, shape=(h,w), mode='write')
latitude[:] = geo.lat
longitude[:] = geo.lon
latitude.flush()
longitude.flush()
if pug.bt_or_refl=='bt':
data = pug.bt
vn = 'brightness_temp'
elif pug.bt_or_refl=='refl':
data = pug.refl
vn = 'reflectance'
else:
data = None
output = np.memmap('{}.real4.{}.{}'.format(vn, w, h), dtype=np.float32, shape=(h,w), mode='write')
output[:] = data
output.flush()
prad = pug.rad
if prad is not None:
rad = np.memmap('radiance.real4.{}.{}'.format(w, h), dtype=np.float32, shape=(h,w), mode='write')
rad[:] = np.ma.fix_invalid(pug.rad, fill_value=np.NAN)
rad.flush()
def _debug(type, value, tb):
"enable with sys.excepthook = debug"
if not sys.stdin.isatty():
sys.__excepthook__(type, value, tb)
else:
import traceback, pdb
traceback.print_exception(type, value, tb)
# …then start the debugger in post-mortem mode.
pdb.post_mortem(tb) # more “modern”
def main():
parser = argparse.ArgumentParser(
description="PURPOSE",
epilog="",
fromfile_prefix_chars='@')
parser.add_argument('-v', '--verbose', dest='verbosity', action="count", default=0,
help='each occurrence increases verbosity 1 level through ERROR-WARNING-INFO-DEBUG')
parser.add_argument('-d', '--debug', dest='debug', action='store_true',
help="enable interactive PDB debugger on exception")
# http://docs.python.org/2.7/library/argparse.html#nargs
# parser.add_argument('--stuff', nargs='5', dest='my_stuff',
# help="one or more random things")
parser.add_argument('inputs', nargs='*',
help="input file to process")
args = parser.parse_args()
levels = [logging.ERROR, logging.WARN, logging.INFO, logging.DEBUG]
logging.basicConfig(level=levels[min(3, args.verbosity)])
if args.debug:
sys.excepthook = _debug
if not args.inputs:
unittest.main()
return 0
for pn in args.inputs:
goesr_to_fbf(pn)
return 0
if __name__ == '__main__':
sys.exit(main())