Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
"""Methods for plotting performance diagram."""
import numpy
import matplotlib.colors
import matplotlib.pyplot as pyplot
DEFAULT_LINE_COLOUR = numpy.array([228, 26, 28], dtype=float) / 255
DEFAULT_LINE_WIDTH = 3
DEFAULT_BIAS_LINE_COLOUR = numpy.full(3, 152. / 255)
DEFAULT_BIAS_LINE_WIDTH = 2
LEVELS_FOR_CSI_CONTOURS = numpy.linspace(0, 1, num=11, dtype=float)
LEVELS_FOR_BIAS_CONTOURS = numpy.array(
[0.25, 0.5, 0.75, 1., 1.5, 2., 3., 5.])
BIAS_STRING_FORMAT = '%.2f'
BIAS_LABEL_PADDING_PX = 10
FIGURE_WIDTH_INCHES = 10
FIGURE_HEIGHT_INCHES = 10
FONT_SIZE = 20
pyplot.rc('font', size=FONT_SIZE)
pyplot.rc('axes', titlesize=FONT_SIZE)
pyplot.rc('axes', labelsize=FONT_SIZE)
pyplot.rc('xtick', labelsize=FONT_SIZE)
pyplot.rc('ytick', labelsize=FONT_SIZE)
pyplot.rc('legend', fontsize=FONT_SIZE)
pyplot.rc('figure', titlesize=FONT_SIZE)
def _get_sr_pod_grid(success_ratio_spacing=0.01, pod_spacing=0.01):
"""Creates grid in SR-POD (success ratio / probability of detection) space.
M = number of rows (unique POD values) in grid
N = number of columns (unique success ratios) in grid
:param success_ratio_spacing: Spacing between grid cells in adjacent
columns.
:param pod_spacing: Spacing between grid cells in adjacent rows.
:return: success_ratio_matrix: M-by-N numpy array of success ratios.
Success ratio increases with column index.
:return: pod_matrix: M-by-N numpy array of POD values. POD decreases with
row index.
"""
num_success_ratios = 1 + int(numpy.ceil(1. / success_ratio_spacing))
num_pod_values = 1 + int(numpy.ceil(1. / pod_spacing))
unique_success_ratios = numpy.linspace(0., 1., num=num_success_ratios)
unique_pod_values = numpy.linspace(0., 1., num=num_pod_values)[::-1]
return numpy.meshgrid(unique_success_ratios, unique_pod_values)
def _csi_from_sr_and_pod(success_ratio_array, pod_array):
"""Computes CSI (critical success index) from success ratio and POD.
POD = probability of detection
:param success_ratio_array: numpy array (any shape) of success ratios.
:param pod_array: numpy array (same shape) of POD values.
:return: csi_array: numpy array (same shape) of CSI values.
"""
return (success_ratio_array ** -1 + pod_array ** -1 - 1.) ** -1
def _bias_from_sr_and_pod(success_ratio_array, pod_array):
"""Computes frequency bias from success ratio and POD.
POD = probability of detection
:param success_ratio_array: numpy array (any shape) of success ratios.
:param pod_array: numpy array (same shape) of POD values.
:return: frequency_bias_array: numpy array (same shape) of frequency biases.
"""
return pod_array / success_ratio_array
def _get_csi_colour_scheme():
"""Returns colour scheme for CSI (critical success index).
:return: colour_map_object: Colour scheme (instance of
`matplotlib.colors.ListedColormap`).
:return: colour_norm_object: Instance of `matplotlib.colors.BoundaryNorm`,
defining the scale of the colour map.
"""
this_colour_map_object = pyplot.cm.Blues
this_colour_norm_object = matplotlib.colors.BoundaryNorm(
LEVELS_FOR_CSI_CONTOURS, this_colour_map_object.N)
rgba_matrix = this_colour_map_object(this_colour_norm_object(
LEVELS_FOR_CSI_CONTOURS))
colour_list = [
rgba_matrix[i, ..., :-1] for i in range(rgba_matrix.shape[0])
]
colour_map_object = matplotlib.colors.ListedColormap(colour_list)
colour_map_object.set_under(numpy.array([1, 1, 1]))
colour_norm_object = matplotlib.colors.BoundaryNorm(
LEVELS_FOR_CSI_CONTOURS, colour_map_object.N)
return colour_map_object, colour_norm_object
def _add_colour_bar(
axes_object, colour_map_object, values_to_colour, min_colour_value,
max_colour_value, colour_norm_object=None,
orientation_string='vertical', extend_min=True, extend_max=True,
fraction_of_axis_length=1., font_size=FONT_SIZE):
"""Adds colour bar to existing axes.
:param axes_object: Existing axes (instance of
`matplotlib.axes._subplots.AxesSubplot`).
:param colour_map_object: Colour scheme (instance of
`matplotlib.pyplot.cm`).
:param values_to_colour: numpy array of values to colour.
:param min_colour_value: Minimum value in colour map.
:param max_colour_value: Max value in colour map.
:param colour_norm_object: Instance of `matplotlib.colors.BoundaryNorm`,
defining the scale of the colour map. If `colour_norm_object is None`,
will assume that scale is linear.
:param orientation_string: Orientation of colour bar ("vertical" or
"horizontal").
:param extend_min: Boolean flag. If True, the bottom of the colour bar will
have an arrow. If False, it will be a flat line, suggesting that lower
values are not possible.
:param extend_max: Same but for top of colour bar.
:param fraction_of_axis_length: Fraction of axis length (y-axis if
orientation is "vertical", x-axis if orientation is "horizontal")
occupied by colour bar.
:param font_size: Font size for labels on colour bar.
:return: colour_bar_object: Colour bar (instance of
`matplotlib.pyplot.colorbar`) created by this method.
"""
if colour_norm_object is None:
colour_norm_object = matplotlib.colors.Normalize(
vmin=min_colour_value, vmax=max_colour_value, clip=False)
scalar_mappable_object = pyplot.cm.ScalarMappable(
cmap=colour_map_object, norm=colour_norm_object)
scalar_mappable_object.set_array(values_to_colour)
if extend_min and extend_max:
extend_string = 'both'
elif extend_min:
extend_string = 'min'
elif extend_max:
extend_string = 'max'
else:
extend_string = 'neither'
if orientation_string == 'horizontal':
padding = 0.075
else:
padding = 0.05
colour_bar_object = pyplot.colorbar(
ax=axes_object, mappable=scalar_mappable_object,
orientation=orientation_string, pad=padding, extend=extend_string,
shrink=fraction_of_axis_length)
colour_bar_object.ax.tick_params(labelsize=font_size)
return colour_bar_object
def get_points_in_perf_diagram(observed_labels, forecast_probabilities):
"""Creates points for performance diagram.
E = number of examples
T = number of binarization thresholds
:param observed_labels: length-E numpy array of class labels (integers in
0...1).
:param forecast_probabilities: length-E numpy array with forecast
probabilities of label = 1.
:return: pod_by_threshold: length-T numpy array of POD (probability of
detection) values.
:return: success_ratio_by_threshold: length-T numpy array of success ratios.
"""
assert numpy.all(numpy.logical_or(
observed_labels == 0, observed_labels == 1
))
assert numpy.all(numpy.logical_and(
forecast_probabilities >= 0, forecast_probabilities <= 1
))
observed_labels = observed_labels.astype(int)
binarization_thresholds = numpy.linspace(0, 1, num=1001, dtype=float)
num_thresholds = len(binarization_thresholds)
pod_by_threshold = numpy.full(num_thresholds, numpy.nan)
success_ratio_by_threshold = numpy.full(num_thresholds, numpy.nan)
for k in range(num_thresholds):
these_forecast_labels = (
forecast_probabilities >= binarization_thresholds[k]
).astype(int)
this_num_hits = numpy.sum(numpy.logical_and(
these_forecast_labels == 1, observed_labels == 1
))
this_num_false_alarms = numpy.sum(numpy.logical_and(
these_forecast_labels == 1, observed_labels == 0
))
this_num_misses = numpy.sum(numpy.logical_and(
these_forecast_labels == 0, observed_labels == 1
))
try:
pod_by_threshold[k] = (
float(this_num_hits) / (this_num_hits + this_num_misses)
)
except ZeroDivisionError:
pass
try:
success_ratio_by_threshold[k] = (
float(this_num_hits) / (this_num_hits + this_num_false_alarms)
)
except ZeroDivisionError:
pass
pod_by_threshold = numpy.array([1.] + pod_by_threshold.tolist() + [0.])
success_ratio_by_threshold = numpy.array(
[0.] + success_ratio_by_threshold.tolist() + [1.]
)
return pod_by_threshold, success_ratio_by_threshold
def plot_performance_diagram(
observed_labels, forecast_probabilities,
line_colour=DEFAULT_LINE_COLOUR, line_width=DEFAULT_LINE_WIDTH,
bias_line_colour=DEFAULT_BIAS_LINE_COLOUR,
bias_line_width=DEFAULT_BIAS_LINE_WIDTH, axes_object=None):
"""Plots performance diagram.
E = number of examples
:param observed_labels: length-E numpy array of class labels (integers in
0...1).
:param forecast_probabilities: length-E numpy array with forecast
probabilities of label = 1.
:param line_colour: Colour (in any format accepted by `matplotlib.colors`).
:param line_width: Line width (real positive number).
:param bias_line_colour: Colour of contour lines for frequency bias.
:param bias_line_width: Width of contour lines for frequency bias.
:param axes_object: Will plot on these axes (instance of
`matplotlib.axes._subplots.AxesSubplot`). If `axes_object is None`,
will create new axes.
:return: pod_by_threshold: See doc for `get_points_in_perf_diagram`.
detection) values.
:return: success_ratio_by_threshold: Same.
"""
pod_by_threshold, success_ratio_by_threshold = get_points_in_perf_diagram(
observed_labels=observed_labels,
forecast_probabilities=forecast_probabilities)
if axes_object is None:
_, axes_object = pyplot.subplots(
1, 1, figsize=(FIGURE_WIDTH_INCHES, FIGURE_HEIGHT_INCHES)
)
success_ratio_matrix, pod_matrix = _get_sr_pod_grid()
csi_matrix = _csi_from_sr_and_pod(success_ratio_matrix, pod_matrix)
frequency_bias_matrix = _bias_from_sr_and_pod(
success_ratio_matrix, pod_matrix)
this_colour_map_object, this_colour_norm_object = _get_csi_colour_scheme()
pyplot.contourf(
success_ratio_matrix, pod_matrix, csi_matrix, LEVELS_FOR_CSI_CONTOURS,
cmap=this_colour_map_object, norm=this_colour_norm_object, vmin=0.,
vmax=1., axes=axes_object)
colour_bar_object = _add_colour_bar(
axes_object=axes_object, colour_map_object=this_colour_map_object,
colour_norm_object=this_colour_norm_object,
values_to_colour=csi_matrix, min_colour_value=0.,
max_colour_value=1., orientation_string='vertical',
extend_min=False, extend_max=False)
colour_bar_object.set_label('CSI (critical success index)')
bias_colour_tuple = ()
for _ in range(len(LEVELS_FOR_BIAS_CONTOURS)):
bias_colour_tuple += (bias_line_colour,)
bias_contour_object = pyplot.contour(
success_ratio_matrix, pod_matrix, frequency_bias_matrix,
LEVELS_FOR_BIAS_CONTOURS, colors=bias_colour_tuple,
linewidths=bias_line_width, linestyles='dashed', axes=axes_object)
pyplot.clabel(
bias_contour_object, inline=True, inline_spacing=BIAS_LABEL_PADDING_PX,
fmt=BIAS_STRING_FORMAT, fontsize=FONT_SIZE)
nan_flags = numpy.logical_or(
numpy.isnan(success_ratio_by_threshold), numpy.isnan(pod_by_threshold)
)
if not numpy.all(nan_flags):
real_indices = numpy.where(numpy.invert(nan_flags))[0]
axes_object.plot(
success_ratio_by_threshold[real_indices],
pod_by_threshold[real_indices], color=line_colour,
linestyle='solid', linewidth=line_width)
axes_object.set_xlabel('Success ratio (1 - FAR)')
axes_object.set_ylabel('POD (probability of detection)')
axes_object.set_xlim(0., 1.)
axes_object.set_ylim(0., 1.)
return pod_by_threshold, success_ratio_by_threshold