Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
import numpy as np
import h5py
from util.util import get_grid_values, is_day
import glob
# target_param = 'cloud_probability'
# target_param = 'cld_opd_dcomp'
target_param = 'cld_opd_dcomp_1'
# target_param = 'cld_opd_dcomp_2'
# target_param = 'cld_opd_dcomp_3'
group_name_i = 'super/'
group_name_m = 'orig/'
solzen_name = group_name_m + 'solar_zenith'
snow_class_name = group_name_m + 'snow_class'
params_i = [group_name_i+'temp_ch38', group_name_i+'refl_ch01', group_name_i+'cloud_probability',
group_name_i+target_param]
params_m = [group_name_m+'temp_ch38', group_name_m+'refl_ch01',
group_name_m+'refl_submin_ch01', group_name_m+'refl_submax_ch01', group_name_m+'refl_substddev_ch01',
group_name_m+'cloud_probability',
group_name_m+target_param]
param_idx_m = params_m.index(group_name_m + target_param)
param_idx_i = params_i.index(group_name_i + target_param)
cp_idx_i = params_i.index(group_name_i + 'cloud_probability')
DO_WRITE_OUTFILE = True
def snow_covered(tile):
return np.any(tile > 1)
def is_missing(p_idx, tile):
keep = np.invert(np.isnan(tile[p_idx, ]))
if np.sum(keep) / keep.size < 0.98:
return True
def keep_tile(cp_idx, opd_idx, tile):
opd = tile[opd_idx, ].copy()
cp = tile[cp_idx, ].copy()
cp = process_cld_prob(cp)
if cp is None:
return None
opd = process_cld_opd(opd)
if opd is not None:
tile[opd_idx, ] = opd
return tile
else:
return None
def process_cld_prob(cld_prob):
keep = np.invert(np.isnan(cld_prob))
num_keep = np.sum(keep)
keep = np.where(keep, np.logical_or(cld_prob < 0.35, cld_prob > 0.65), False)
frac_keep = np.sum(keep)/num_keep
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
return None
grd_k = np.where(np.invert(keep), 0, cld_prob) # Convert NaN to 0
return grd_k
def process_cloud_frac(grd_k):
pass
def get_cloud_frac_5cat(grd_k):
grd_k = np.where(np.isnan(grd_k), 0, grd_k)
grd_k = np.where(grd_k < 0.5, 0, 1)
s = grd_k[:, 0::4, 0::4] + grd_k[:, 1::4, 0::4] + grd_k[:, 2::4, 0::4] + grd_k[:, 3::4, 0::4] + \
grd_k[:, 0::4, 1::4] + grd_k[:, 1::4, 1::4] + grd_k[:, 2::4, 1::4] + grd_k[:, 3::4, 1::4] + \
grd_k[:, 0::4, 2::4] + grd_k[:, 1::4, 2::4] + grd_k[:, 2::4, 2::4] + grd_k[:, 3::4, 2::4] + \
grd_k[:, 0::4, 3::4] + grd_k[:, 1::4, 3::4] + grd_k[:, 2::4, 3::4] + grd_k[:, 3::4, 3::4]
cat_0 = np.logical_and(s >= 0, s < 2)
cat_1 = np.logical_and(s >= 2, s < 6)
cat_2 = np.logical_and(s >= 6, s < 11)
cat_3 = np.logical_and(s >= 11, s < 15)
cat_4 = np.logical_and(s >= 15, s <= 16)
s[cat_0] = 0
s[cat_1] = 1
s[cat_2] = 2
s[cat_3] = 3
s[cat_4] = 4
return s
def process_cld_opd(grd_k):
keep = np.invert(np.isnan(grd_k))
num_keep = np.sum(keep)
keep_cld = np.where(keep, np.logical_and(1.0 < grd_k, grd_k < 158.0), False)
frac_cld = np.sum(keep_cld)/num_keep
# if not (0.20 < frac_cld):
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
return None
grd_k = np.where(np.invert(keep), 0, grd_k) # Convert NaN to 0
return grd_k
def run_all(directory, out_directory, day_night='ANY', pattern='clavrx_*.nc', start=10, is_snow_covered=None):
cnt = start
total_num_train_samples = 0
total_num_valid_samples = 0
# path = directory + '**' + '/' + pattern
path = directory + '*_v3/2020/' + '**' + '/' + pattern
all_files = glob.glob(path, recursive=True)
test_files = glob.glob(directory + '*_v3/2020/*/01/*/*.nc', recursive=True)
valid_files = glob.glob(directory + '*_v3/2020/*/0[2-6]/*/*.nc', recursive=True)
train_files = [f for f in all_files if f not in valid_files + test_files]
data_tiles_i = []
data_tiles_m = []
f_cnt = 0
num_files = len(valid_files)
print('Start, number of valid files: ', num_files)
total_num_not_missing = 0
num_skip = 3
param_train_hist = np.zeros([16], dtype=np.int64)
param_valid_hist = np.zeros([16], dtype=np.int64)
# cloud_prob to cloud fraction
# ----------------------------
tile_width = 32
kernel_size = 5
factor = 4
# tile_width = 64
# kernel_size = 7
# factor = 4
# hist_range = [0.0, 1.0]
hist_range = [0.0, 160.0]
for idx, data_f in enumerate(valid_files):
if idx % num_skip == 0: # if we want to skip some files
try:
h5f = h5py.File(data_f, 'r')
except:
print('cant open file: ', data_f)
continue
try:
num_not_missing, num_snow_covered = \
run(h5f, params_m, data_tiles_m, params_i, data_tiles_i,
tile_width=tile_width, kernel_size=kernel_size, factor=factor,
day_night=day_night, is_snow_covered=is_snow_covered)
except Exception as e:
print(e)
h5f.close()
continue
print(data_f)
f_cnt += 1
h5f.close()
total_num_not_missing += num_not_missing
if len(data_tiles_m) == 0:
continue
if (f_cnt % 100) == 0:
num_valid_samples = 0
if len(data_tiles_m) > 0:
valid_i = np.stack(data_tiles_i)
valid_m = np.stack(data_tiles_m)
if DO_WRITE_OUTFILE:
np.save(out_directory + 'valid_mres_' + f'{cnt:04d}', valid_m)
np.save(out_directory + 'valid_ires_' + f'{cnt:04d}', valid_i)
num_valid_samples = valid_m.shape[0]
param_valid_hist += np.histogram(valid_m[:, param_idx_m, :, :], bins=16, range=hist_range)[0]
data_tiles_i = []
data_tiles_m = []
print(' num_valid_samples, progress % : ', num_valid_samples, int((f_cnt/(num_files/num_skip))*100))
total_num_valid_samples += num_valid_samples
print('total_num_valid_samples, total_num_not_missing: ', total_num_valid_samples, total_num_not_missing)
print('--------------------------------------------------')
cnt += 1
# Write out leftover, if any. Maybe make this better someday
num_valid_samples = 0
if len(data_tiles_m) > 0:
valid_i = np.stack(data_tiles_i)
valid_m = np.stack(data_tiles_m)
if DO_WRITE_OUTFILE:
np.save(out_directory + 'valid_mres_' + f'{cnt:04d}', valid_m)
np.save(out_directory + 'valid_ires_' + f'{cnt:04d}', valid_i)
num_valid_samples = valid_m.shape[0]
param_valid_hist += np.histogram(valid_m[:, param_idx_m, :, :], bins=16, range=hist_range)[0]
total_num_valid_samples += num_valid_samples
print('total_num_valid_samples, total_num_not_missing: ', total_num_valid_samples, total_num_not_missing)
print(param_valid_hist)
print('--------------------------------------------------')
print('----------------------------------------------------------------')
data_tiles_i = []
data_tiles_m = []
f_cnt = 0
cnt = start
total_num_not_missing = 0
num_files = len(train_files)
print('Start, number of train files: ', num_files)
for idx, data_f in enumerate(train_files):
if idx % num_skip == 0: # if we want to skip some files
try:
h5f = h5py.File(data_f, 'r')
except:
print('cant open file: ', data_f)
continue
try:
num_not_missing, num_snow_covered = \
run(h5f, params_m, data_tiles_m, params_i, data_tiles_i,
tile_width=tile_width, kernel_size=kernel_size, factor=factor,
day_night=day_night, is_snow_covered=is_snow_covered)
except Exception as e:
print(e)
h5f.close()
continue
print(data_f)
f_cnt += 1
h5f.close()
total_num_not_missing += num_not_missing
if len(data_tiles_m) == 0:
continue
if (f_cnt % 100) == 0:
num_train_samples = 0
if len(data_tiles_m) > 0:
train_i = np.stack(data_tiles_i)
train_m = np.stack(data_tiles_m)
if DO_WRITE_OUTFILE:
np.save(out_directory + 'train_ires_' + f'{cnt:04d}', train_i)
np.save(out_directory + 'train_mres_' + f'{cnt:04d}', train_m)
num_train_samples = train_m.shape[0]
param_train_hist += np.histogram(train_m[:, param_idx_m, :, :], bins=16, range=hist_range)[0]
data_tiles_i = []
data_tiles_m = []
print(' num_train_samples, progress % : ', num_train_samples, int((f_cnt/(num_files/num_skip))*100))
total_num_train_samples += num_train_samples
print('total_num_train_samples, total_num_not_missing: ', total_num_train_samples, total_num_not_missing)
print('--------------------------------------------------')
cnt += 1
# Write out leftover, if any. Maybe make this better someday
num_train_samples = 0
if len(data_tiles_m) > 0:
train_i = np.stack(data_tiles_i)
train_m = np.stack(data_tiles_m)
if DO_WRITE_OUTFILE:
np.save(out_directory + 'train_ires_' + f'{cnt:04d}', train_i)
np.save(out_directory + 'train_mres_' + f'{cnt:04d}', train_m)
num_train_samples = train_m.shape[0]
param_train_hist += np.histogram(train_m[:, param_idx_m, :, :], bins=16, range=hist_range)[0]
total_num_train_samples += num_train_samples
print('total_num_train_samples, total_num_not_missing: ', total_num_train_samples, total_num_not_missing)
print(param_train_hist)
print('--------------------------------------------------')
print('*** total_num_train_samples, total_num_valid_samples: ', total_num_train_samples, total_num_valid_samples)
# tile_width: Must be even!
# kernel_size: Must be odd!
def run(h5f, params_m, data_tiles_m, params_i, data_tiles_i, tile_width=64, kernel_size=3, factor=2,
day_night='ANY', is_snow_covered=None):
border = int((kernel_size - 1)/2) + 1 # Need to add for interpolation with no edge effects
param_name = params_m[0]
num_lines = h5f[param_name].shape[0]
num_pixels = h5f[param_name].shape[1] # Must be even
if day_night != 'ANY':
solzen = get_grid_values(h5f, solzen_name, 0, 0, None, num_lines, num_pixels)
if is_snow_covered is not None:
snow = get_grid_values(h5f, snow_class_name, 0, 0, None, num_lines, num_pixels)
grd_s = []
for param in params_m:
try:
grd = get_grid_values(h5f, param, 0, 0, None, num_lines, num_pixels)
grd_s.append(grd)
except Exception as e:
print(e)
return
data_m = np.stack(grd_s)
grd_s = []
for param in params_i:
try:
grd = get_grid_values(h5f, param, 0, 0, None, num_lines*factor, num_pixels*factor)
grd_s.append(grd)
except Exception as e:
print(e)
return
data_i = np.stack(grd_s)
tile_width += 2 * border
i_skip = tile_width
j_skip = tile_width
i_start = border - 1 # zero-based
j_start = border - 1 # zero-based
num_y_tiles = int(num_lines / tile_width)
num_x_tiles = int(num_pixels / tile_width)
num_not_missing = 0
num_snow_covered = 0
for j in range(num_y_tiles):
j_a = j_start + j * j_skip
j_b = j_a + tile_width
for i in range(num_x_tiles):
i_a = i_start + i * i_skip
i_b = i_a + tile_width
if is_snow_covered is not None:
if is_snow_covered:
if not snow_covered(snow[j_a:j_b, i_a:i_b]):
continue
num_snow_covered += 1
else:
if snow_covered(snow[j_a:j_b, i_a:i_b]):
num_snow_covered += 1
continue
if day_night == 'DAY' and not is_day(solzen[j_a:j_b, i_a:i_b]):
continue
elif day_night == 'NIGHT' and is_day(solzen[j_a:j_b, i_a:i_b]):
continue
nda_m = data_m[:, j_a:j_b, i_a:i_b]
nda_i = data_i[:, j_a*factor:j_b*factor, i_a*factor:i_b*factor]
if is_missing(param_idx_i, nda_i):
continue
num_not_missing += 1
nda_i = keep_tile(cp_idx_i, param_idx_i, nda_i)
if nda_i is not None:
data_tiles_m.append(nda_m)
data_tiles_i.append(nda_i)
return num_not_missing, num_snow_covered