Skip to content
Snippets Groups Projects
GFSDataset.py 18.8 KiB
Newer Older
tomrink's avatar
tomrink committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600
import datetime
from datetime import timezone
import glob
import os
import numpy as np
import xarray as xr
# from util.util import value_to_index, homedir
from metpy.units import units

# gfs_directory = '/ships22/cloud/Ancil_Data/clavrx_ancil_data/dynamic/gfs/'
homedir = os.path.expanduser('~') + '/'
gfs_directory = homedir+'data/gfs/'
gfs_date_format = '%y%m%d'

# force incoming longitude to (0, 360) to match GFS
lon360 = True
# GFS half degree resolution
NX = 720
NY = 361
lat_coords = np.linspace(-90, 90, NY)
lon_coords = np.linspace(0, 359.5, NX)

plevs = np.array([10.0, 20.0, 30.0, 50.0, 70.0, 100.0, 150.0, 200.0, 250.0, 300.0,
                  350.0, 400.0, 450.0, 500.0, 550.0, 600.0, 650.0, 700.0, 750.0, 800.0,
                  850.0, 900.0, 925.0, 950.0, 975.0, 1000.0])
NZ = plevs.shape[0]


class MyGenericException(Exception):
    def __init__(self, message):
        self.message = message


# Return index of nda closest to value. nda must be 1d
def value_to_index(nda, value):
    diff = np.abs(nda - value)
    idx = np.argmin(diff)
    return idx


def get_timestamp(filename):
    toks = filename.split('.')
    tstr = toks[1].split('_')[0]
    dto = datetime.datetime.strptime(tstr, gfs_date_format + '%H').replace(tzinfo=timezone.utc)
    dto = dto + datetime.timedelta(hours=12)
    return dto.timestamp()


def get_time_tuple_utc(timestamp):
    dt_obj = datetime.datetime.fromtimestamp(timestamp, timezone.utc)
    return dt_obj, dt_obj.timetuple()


# def get_bounding_gfs_files(timestamp):
#     dt_obj, time_tup = get_time_tuple_utc(timestamp)
#     dt_obj = dt_obj + datetime.timedelta(hours=12)
#     date_str = dt_obj.strftime(gfs_date_format)
#     dt_obj = datetime.datetime.strptime(date_str, gfs_date_format).replace(tzinfo=timezone.utc)
#
#     dt_obj_r = dt_obj + datetime.timedelta(days=1)
#     date_str_r = dt_obj_r.strftime(gfs_date_format)
#
#     dt_obj_l = dt_obj - datetime.timedelta(days=1)
#     date_str_l = dt_obj_l.strftime(gfs_date_format)
#
#     flist_l = glob.glob(gfs_directory+'gfs.'+date_str_l+'??_F012.h5')
#     flist = glob.glob(gfs_directory+'gfs.'+date_str+'??_F012.h5')
#     flist_r = glob.glob(gfs_directory+'gfs.'+date_str_r+'??_F012.h5')
#     filelist = flist_l + flist + flist_r
#     if len(filelist) == 0:
#         return None, None, None, None
#
#     ftimes = []
#     for pname in filelist:  # TODO: make better with regular expressions (someday)
#         fname = os.path.split(pname)[1]
#         ftimes.append(get_timestamp(fname))
#
#     tarr = np.array(ftimes)
#     sidxs = tarr.argsort()
#
#     farr = np.array(filelist)
#     farr = farr[sidxs]
#     ftimes = tarr[sidxs]
#     idxs = np.arange(len(filelist))
#
#     above = ftimes >= timestamp
#     if not above.any():
#         return None, None, None, None
#     tR = ftimes[above].min()
#
#     below = ftimes <= timestamp
#     if not below.any():
#         return None, None, None, None
#     tL = ftimes[below].max()
#
#     iL = idxs[below].max()
#     iR = iL + 1
#
#     fList = farr.tolist()
#
#     return fList[iL], ftimes[iL], fList[iR], ftimes[iR]


class GFSData:

    def __init__(self, filename, press_range=None, lon_range=None, lat_range=None):
        self.filename = filename
        self.dataset = None

        self.lon_range = self.lat_range = self.press_range = None
        self.x_lo = self.x_hi = self.y_lo = self.y_hi = self.z_lo = self.z_hi = None

        self.update(press_range=press_range, lon_range=lon_range, lat_range=lat_range)

    def __enter__(self):
        # Open the dataset and assign it to self.dataset
        self.dataset = xr.open_dataset(self.filename)
        return self

    def __exit__(self, exc_type, exc_value, exc_traceback):
        # Close the dataset before exiting
        self.dataset.close()

    def update(self, press_range=None, lon_range=None, lat_range=None):
        self._calc_indexes(press_range=press_range, lon_range=lon_range, lat_range=lat_range)

    def _calc_indexes(self, press_range=None, lon_range=None, lat_range=None):
        if lon_range is not None and lon_range != self.lon_range:
            self.lon_range = lon_range

            lon_lo = lon_range[0]
            lon_hi = lon_range[1]

            if lon360:  # convert -180/+180 to 0,360
                if lon_lo < 0:
                    lon_lo += 360
                if lon_hi < 0:
                    lon_hi += 360

            self.x_lo = value_to_index(lon_coords, lon_lo)
            self.x_hi = value_to_index(lon_coords, lon_hi)
        elif self.lon_range is None:
            self.x_lo, self.x_hi = 0, NX

        if lat_range is not None and lat_range != self.lat_range:
            self.lat_range = lat_range

            lat_lo = lat_range[0]
            lat_hi = lat_range[1]

            self.y_lo = value_to_index(lat_coords, lat_lo)
            self.y_hi = value_to_index(lat_coords, lat_hi)
        elif self.lat_range is None:
            self.y_lo, self.y_hi = 0, NY

        if press_range is not None and press_range != self.press_range:
            self.press_range = press_range

            self.z_lo = value_to_index(plevs, press_range[0])
            self.z_hi = value_to_index(plevs, press_range[1])
        elif self.press_range is None:
            self.z_lo, self.z_hi = 0, NZ

    def get_volume(self, fld_name, unit_str):

        nda = self.dataset[fld_name].values
        sub_nda = nda[self.y_lo:self.y_hi, self.x_lo:self.x_hi, self.z_lo:self.z_hi]
        xra = xr.DataArray(sub_nda, dims=['Latitude', 'Longitude', 'Pressure'],
                           coords={"Latitude": lat_coords[self.y_lo:self.y_hi],
                                   "Longitude": lon_coords[self.x_lo:self.x_hi],
                                   "Pressure": plevs[self.z_lo:self.z_hi]},
                           attrs={"description": fld_name, "units": unit_str})

        return xra

    def volume_np_to_xr(self, nda, dims):

        xra = xr.DataArray(nda, dims=dims,
                           coords={"Latitude": lat_coords[self.y_lo:self.y_hi],
                                   "Longitude": lon_coords[self.x_lo:self.x_hi],
                                   "Pressure": plevs[self.z_lo:self.z_hi]})

        return xra


def get_horz_layer(xr_dataset, fld_name, press, lon_range=None, lat_range=None):
    p_idx = value_to_index(plevs, press)

    x_lo, x_hi = 0, NX
    y_lo, y_hi = 0, NY

    if lon_range is not None:
        lon_lo = lon_range[0]
        lon_hi = lon_range[1]
        lat_lo = lat_range[0]
        lat_hi = lat_range[1]
        if lon360:
            if lon_lo < 0:
                lon_lo += 360
            if lon_hi < 0:
                lon_hi += 360

        x_lo = value_to_index(lon_coords, lon_lo)
        x_hi = value_to_index(lon_coords, lon_hi)
        y_lo = value_to_index(lat_coords, lat_lo)
        y_hi = value_to_index(lat_coords, lat_hi)

    nda = xr_dataset[fld_name].values
    sub_nda = nda[y_lo:y_hi, x_lo:x_hi, p_idx]
    xra = xr.DataArray(sub_nda, dims=['latitude', 'longitude'],
                       coords={"latitude": lat_coords[y_lo:y_hi], "longitude": lon_coords[x_lo:x_hi]},
                       attrs={"description": fld_name, "units": 'm/s'})

    return xra


def get_horz_layer_s(xr_dataset, fld_names, press, lon_range=None, lat_range=None):
    p_idx = value_to_index(plevs, press)

    x_lo = 0
    x_hi = NX
    y_lo = 0
    y_hi = NY

    if lon_range is not None:
        lon_lo = lon_range[0]
        lon_hi = lon_range[1]
        lat_lo = lat_range[0]
        lat_hi = lat_range[1]
        if lon360:
            if lon_lo < 0:
                lon_lo += 360
            if lon_hi < 0:
                lon_hi += 360

        x_lo = value_to_index(lon_coords, lon_lo)
        x_hi = value_to_index(lon_coords, lon_hi)
        y_lo = value_to_index(lat_coords, lat_lo)
        y_hi = value_to_index(lat_coords, lat_hi)

    sub_fld_s = []
    for fld_name in fld_names:
        fld = xr_dataset[fld_name]
        sub_fld = fld[y_lo:y_hi, x_lo:x_hi, p_idx]
        sub_fld_s.append(sub_fld)

    sub_fld = xr.concat(sub_fld_s, 'channel')
    sub_fld = sub_fld.assign_coords(channel=fld_names, fakeDim2=lon_coords[x_lo:x_hi], fakeDim1=lat_coords[y_lo:y_hi])

    return sub_fld


def get_time_interpolated_layer(xr_dataset_s, time_s, time, fld_name, press, lon_range=None, lat_range=None, method='linear'):
    layer_s = []
    for ds in xr_dataset_s:
        lyr = get_horz_layer(ds, fld_name, press, lon_range=lon_range, lat_range=lat_range)
        layer_s.append(lyr)

    lyr = xr.concat(layer_s, 'time')
    lyr = lyr.assign_coords(time=time_s)

    intrp_lyr = lyr.interp(time=time, method=method)

    return intrp_lyr


def get_time_interpolated_layer_s(xr_dataset_s, time_s, time, fld_name_s, press, lon_range=None, lat_range=None, method='linear'):
    layer_s = []
    for ds in xr_dataset_s:
        lyr = get_horz_layer_s(ds, fld_name_s, press, lon_range=lon_range, lat_range=lat_range)
        layer_s.append(lyr)

    lyr = xr.concat(layer_s, 'time')
    lyr = lyr.assign_coords(time=time_s)

    intrp_lyr = lyr.interp(time=time, method='linear')

    return intrp_lyr


def get_vert_profile(xr_dataset, fld_name, lons, lats, method='linear'):
    if lon360:  # convert -180/+180 to 0,360
        lons = np.where(lons < 0, lons + 360, lons)

    fld = xr_dataset[fld_name]
    fld = fld.assign_coords(fakeDim2=lon_coords, fakeDim1=lat_coords, fakeDim0=plevs)

    dim2 = xr.DataArray(lons, dims='k')
    dim1 = xr.DataArray(lats, dims='k')

    intrp_fld = fld.interp(fakeDim1=dim1, fakeDim2=dim2, fakeDim0=plevs, method=method)

    return intrp_fld


def get_vert_profile_s(xr_dataset, fld_name_s, lons, lats, method='linear'):
    if lon360:  # convert -180,+180 to 0,360
        lons = np.where(lons < 0, lons + 360, lons)

    fld_s = []
    for fld_name in fld_name_s:
        fld = xr_dataset[fld_name]
        fld = fld.assign_coords(fakeDim2=lon_coords, fakeDim1=lat_coords, fakeDim0=plevs)
        fld_s.append(fld)

    fld = xr.concat(fld_s, 'fld_dim')

    dim2 = xr.DataArray(lons, dims='k')
    dim1 = xr.DataArray(lats, dims='k')

    intrp_fld = fld.interp(fakeDim1=dim1, fakeDim2=dim2, fakeDim0=plevs, method=method)

    return intrp_fld


def get_point(xr_dataset, fld_name, lons, lats, pres_s=None, method='nearest'):
    if lon360:  # convert -180/+180 to 0,360
        lons = np.where(lons < 0, lons + 360, lons) # convert -180,180 to 0,360

    lat_coords = np.linspace(-90, 90, xr_dataset.fakeDim1.size)
    lon_coords = np.linspace(0, 359.5, xr_dataset.fakeDim2.size)

    fld = xr_dataset[fld_name]

    if pres_s is not None:
        fld = fld.assign_coords(fakeDim2=lon_coords, fakeDim1=lat_coords, fakeDim0=plevs)
    else:
        fld = fld.assign_coords(fakeDim2=lon_coords, fakeDim1=lat_coords)

    dim1 = xr.DataArray(lats, dims='k')
    dim2 = xr.DataArray(lons, dims='k')
    if pres_s is not None:
        dim0 = xr.DataArray(pres_s, dims='k')
        intrp_fld = fld.interp(fakeDim0=dim0, fakeDim1=dim1, fakeDim2=dim2, method=method)
    else:
        intrp_fld = fld.interp(fakeDim1=dim1, fakeDim2=dim2, method=method)

    return intrp_fld


def get_point_s(xr_dataset, fld_name_s, lons, lats, pres_s=None, method='nearest'):
    if lon360:  # convert -180/+180 to 0,360
        lons = np.where(lons < 0, lons + 360, lons) # convert -180,180 to 0,360

    lat_coords = np.linspace(-90, 90, xr_dataset.fakeDim1.size)
    lon_coords = np.linspace(0, 359.5, xr_dataset.fakeDim2.size)

    fld_s = []
    for fld_name in fld_name_s:
        fld = xr_dataset[fld_name]
        if pres_s is not None:
            fld = fld.assign_coords(fakeDim2=lon_coords, fakeDim1=lat_coords, fakeDim0=plevs)
        else:
            fld = fld.assign_coords(fakeDim2=lon_coords, fakeDim1=lat_coords)
        fld_s.append(fld)
    fld = xr.concat(fld_s, 'fld_dim')

    dim1 = xr.DataArray(lats, dims='k')
    dim2 = xr.DataArray(lons, dims='k')
    if pres_s is not None:
        dim0 = xr.DataArray(pres_s, dims='k')
        intrp_fld = fld.interp(fakeDim0=dim0, fakeDim1=dim1, fakeDim2=dim2, method=method)
    else:
        intrp_fld = fld.interp(fakeDim1=dim1, fakeDim2=dim2, method=method)

    return intrp_fld


def get_time_interpolated_vert_profile(xr_dataset_s, time_s, fld_name, time, lons, lats, method='linear'):
    prof_s = []
    for ds in xr_dataset_s:
        vp = get_vert_profile(ds, fld_name, lons, lats, method=method)
        prof_s.append(vp)

    prof = xr.concat(prof_s, 'time')
    prof = prof.assign_coords(time=time_s)

    intrp_prof = prof.interp(time=time, method=method)
    intrp_prof = intrp_prof.values

    return intrp_prof


def get_time_interpolated_vert_profile_s(xr_dataset_s, time_s, fld_name_s, time, lons, lats, method='linear'):
    prof_s = []
    for ds in xr_dataset_s:
        vp = get_vert_profile_s(ds, fld_name_s, lons, lats, method=method)
        prof_s.append(vp)

    prof = xr.concat(prof_s, 'time')
    prof = prof.assign_coords(time=time_s)

    intrp_prof = prof.interp(time=time, method=method)
    intrp_prof = intrp_prof.values

    return intrp_prof


def get_time_interpolated_point(ds_0, ds_1, time0, time1, fld_name, time, lons, lats, method='linear'):
    vals_0 = get_point(ds_0, fld_name, lons, lats)
    vals_1 = get_point(ds_1, fld_name, lons, lats)

    vals = xr.concat([vals_0, vals_1], 'time')
    vals = vals.assign_coords(time=[time0, time1])

    intrp_vals = vals.interp(time=time, method=method)

    intrp_vals = intrp_vals.values

    return intrp_vals


def get_time_interpolated_point_s(xr_dataset_s, time_s, fld_name_s, time, lons, lats, method='linear'):
    pt_s = []
    for ds in xr_dataset_s:
        pt = get_point_s(ds, fld_name_s, lons, lats, method=method)
        pt_s.append(pt)

    pt = xr.concat(pt_s, 'time')
    pt = pt.assign_coords(time=time_s)

    intrp_pt = pt.interp(time=time, method=method)
    intrp_pt = intrp_pt.values

    return intrp_pt


def get_time_interpolated_voxel(xr_dataset_s, time_s, time, fld_name, lon, lat, press, x_width=3, y_width=3, z_width=3, method='linear'):
    vox_s = []
    for ds in xr_dataset_s:
        vox = get_voxel(ds, fld_name, lon, lat, press, x_width=x_width, y_width=y_width, z_width=z_width)
        vox_s.append(vox)

    vox = xr.concat(vox_s, 'time')
    vox = vox.assign_coords(time=time_s)

    intrp_vox = vox.interp(time=time, method=method)

    return intrp_vox


def get_voxel(xr_dataset, fld_name, lon, lat, press, x_width=3, y_width=3, z_width=3):
    if lon360:
        if lon < 0:
            lon += 360

    fld = xr_dataset[fld_name]

    p_c = value_to_index(plevs, press)
    x_c = value_to_index(lon_coords, lon)
    y_c = value_to_index(lat_coords, lat)
    y_h = int(y_width / 2)
    x_h = int(x_width / 2)
    p_h = int(z_width / 2)

    y_start = y_c - y_h
    x_start = x_c - x_h
    z_start = p_c - p_h
    if y_start < 0 or x_start < 0 or z_start < 0:
        return None

    y_stop = y_c + y_h + 1
    x_stop = x_c + x_h + 1
    z_stop = p_c + p_h + 1
    if y_stop > NY-1 or x_stop > NX-1 or z_stop > NZ-1:
        return None

    sub_fld = fld[y_start:y_stop, x_start:x_stop, z_start:z_stop]

    sub_fld = sub_fld.expand_dims('channel')
    sub_fld = sub_fld.assign_coords(channel=[fld_name], fakeDim2=lon_coords[x_start:x_stop],
                                    fakeDim1=lat_coords[y_start:y_stop], fakeDim0=plevs[z_start:z_stop])

    return sub_fld


def get_time_interpolated_voxel_s(xr_dataset_s, time_s, time, fld_name_s, lon, lat, press, x_width=3, y_width=3, z_width=3, method='linear'):
    vox_s = []
    for ds in xr_dataset_s:
        vox = get_voxel_s(ds, fld_name_s, lon, lat, press, x_width=x_width, y_width=y_width, z_width=z_width)
        vox_s.append(vox)

    vox = xr.concat(vox_s, 'time')
    vox = vox.assign_coords(time=time_s)

    intrp_vox = vox.interp(time=time, method=method)

    return intrp_vox


def get_voxel_s(xr_dataset, fld_name_s, lon, lat, press, x_width=3, y_width=3, z_width=3):
    if lon360:
        if lon < 0:
            lon += 360

    p_c = value_to_index(plevs, press)
    x_c = value_to_index(lon_coords, lon)
    y_c = value_to_index(lat_coords, lat)
    y_h = int(y_width / 2)
    x_h = int(x_width / 2)
    p_h = int(z_width / 2)

    y_start = y_c - y_h
    x_start = x_c - x_h
    z_start = p_c - p_h
    if y_start < 0 or x_start < 0 or z_start < 0:
        return None

    y_stop = y_c + y_h + 1
    x_stop = x_c + x_h + 1
    z_stop = p_c + p_h + 1
    if y_stop > NY-1 or x_stop > NX-1 or z_stop > NZ-1:
        return None

    sub_fld_s = []
    for name in fld_name_s:
        fld = xr_dataset[name]
        sub_fld = fld[y_start:y_stop, x_start:x_stop, z_start:z_stop]
        sub_fld_s.append(sub_fld)
    sub_fld = xr.concat(sub_fld_s, 'channel')

    sub_fld = sub_fld.assign_coords(channel=fld_name_s, fakeDim2=lon_coords[x_start:x_stop],
                                    fakeDim1=lat_coords[y_start:y_stop], fakeDim0=plevs[z_start:z_stop])

    return sub_fld


def get_volume(xr_dataset, fld_name, unit_str, press_range=None, lon_range=None, lat_range=None):

    x_lo, x_hi = 0, NX
    y_lo, y_hi = 0, NY
    z_lo, z_hi = 0, NZ

    if lon_range is not None:
        lon_lo = lon_range[0]
        lon_hi = lon_range[1]

        if lon360:
            if lon_lo < 0:
                lon_lo += 360
            if lon_hi < 0:
                lon_hi += 360

        x_lo = value_to_index(lon_coords, lon_lo)
        x_hi = value_to_index(lon_coords, lon_hi)

    if lat_range is not None:
        lat_lo = lat_range[0]
        lat_hi = lat_range[1]

        y_lo = value_to_index(lat_coords, lat_lo)
        y_hi = value_to_index(lat_coords, lat_hi)

    if press_range is not None:
        z_lo = value_to_index(plevs, press_range[0])
        z_hi = value_to_index(plevs, press_range[1])

    nda = self.dataset[fld_name].values
    sub_nda = nda[y_lo:y_hi, x_lo:x_hi, z_lo:z_hi]
    xra = xr.DataArray(sub_nda, dims=['Latitude', 'Longitude', 'Pressure'],
                       coords={"Latitude": lat_coords[y_lo:y_hi], "Longitude": lon_coords[x_lo:x_hi], "Pressure": plevs[z_lo:z_hi]},
                       attrs={"description": fld_name, "units": unit_str})

    return xra


def volume_np_to_xr(nda, dims, press_range=None, lon_range=None, lat_range=None):

    x_lo, x_hi = 0, NX
    y_lo, y_hi = 0, NY
    z_lo, z_hi = 0, NZ

    if lon_range is not None:
        lon_lo = lon_range[0]
        lon_hi = lon_range[1]

        if lon360:
            if lon_lo < 0:
                lon_lo += 360
            if lon_hi < 0:
                lon_hi += 360

        x_lo = value_to_index(lon_coords, lon_lo)
        x_hi = value_to_index(lon_coords, lon_hi)

    if lat_range is not None:
        lat_lo = lat_range[0]
        lat_hi = lat_range[1]

        y_lo = value_to_index(lat_coords, lat_lo)
        y_hi = value_to_index(lat_coords, lat_hi)

    if press_range is not None:
        z_lo = value_to_index(plevs, press_range[0])
        z_hi = value_to_index(plevs, press_range[1])

    xra = xr.DataArray(nda, dims=dims,
                       coords={"Latitude": lat_coords[y_lo:y_hi], "Longitude": lon_coords[x_lo:x_hi], "Pressure": plevs[z_lo:z_hi]})

    return xra