Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
import datetime
from datetime import timezone
import glob
import os
import numpy as np
import xarray as xr
# from util.util import value_to_index, homedir
from metpy.units import units
# gfs_directory = '/ships22/cloud/Ancil_Data/clavrx_ancil_data/dynamic/gfs/'
homedir = os.path.expanduser('~') + '/'
gfs_directory = homedir+'data/gfs/'
gfs_date_format = '%y%m%d'
# force incoming longitude to (0, 360) to match GFS
lon360 = True
# GFS half degree resolution
NX = 720
NY = 361
lat_coords = np.linspace(-90, 90, NY)
lon_coords = np.linspace(0, 359.5, NX)
plevs = np.array([10.0, 20.0, 30.0, 50.0, 70.0, 100.0, 150.0, 200.0, 250.0, 300.0,
350.0, 400.0, 450.0, 500.0, 550.0, 600.0, 650.0, 700.0, 750.0, 800.0,
850.0, 900.0, 925.0, 950.0, 975.0, 1000.0])
NZ = plevs.shape[0]
class MyGenericException(Exception):
def __init__(self, message):
self.message = message
# Return index of nda closest to value. nda must be 1d
def value_to_index(nda, value):
diff = np.abs(nda - value)
idx = np.argmin(diff)
return idx
def get_timestamp(filename):
toks = filename.split('.')
tstr = toks[1].split('_')[0]
dto = datetime.datetime.strptime(tstr, gfs_date_format + '%H').replace(tzinfo=timezone.utc)
dto = dto + datetime.timedelta(hours=12)
return dto.timestamp()
def get_time_tuple_utc(timestamp):
dt_obj = datetime.datetime.fromtimestamp(timestamp, timezone.utc)
return dt_obj, dt_obj.timetuple()
# def get_bounding_gfs_files(timestamp):
# dt_obj, time_tup = get_time_tuple_utc(timestamp)
# dt_obj = dt_obj + datetime.timedelta(hours=12)
# date_str = dt_obj.strftime(gfs_date_format)
# dt_obj = datetime.datetime.strptime(date_str, gfs_date_format).replace(tzinfo=timezone.utc)
#
# dt_obj_r = dt_obj + datetime.timedelta(days=1)
# date_str_r = dt_obj_r.strftime(gfs_date_format)
#
# dt_obj_l = dt_obj - datetime.timedelta(days=1)
# date_str_l = dt_obj_l.strftime(gfs_date_format)
#
# flist_l = glob.glob(gfs_directory+'gfs.'+date_str_l+'??_F012.h5')
# flist = glob.glob(gfs_directory+'gfs.'+date_str+'??_F012.h5')
# flist_r = glob.glob(gfs_directory+'gfs.'+date_str_r+'??_F012.h5')
# filelist = flist_l + flist + flist_r
# if len(filelist) == 0:
# return None, None, None, None
#
# ftimes = []
# for pname in filelist: # TODO: make better with regular expressions (someday)
# fname = os.path.split(pname)[1]
# ftimes.append(get_timestamp(fname))
#
# tarr = np.array(ftimes)
# sidxs = tarr.argsort()
#
# farr = np.array(filelist)
# farr = farr[sidxs]
# ftimes = tarr[sidxs]
# idxs = np.arange(len(filelist))
#
# above = ftimes >= timestamp
# if not above.any():
# return None, None, None, None
# tR = ftimes[above].min()
#
# below = ftimes <= timestamp
# if not below.any():
# return None, None, None, None
# tL = ftimes[below].max()
#
# iL = idxs[below].max()
# iR = iL + 1
#
# fList = farr.tolist()
#
# return fList[iL], ftimes[iL], fList[iR], ftimes[iR]
class GFSData:
def __init__(self, filename, press_range=None, lon_range=None, lat_range=None):
self.filename = filename
self.dataset = None
self.lon_range = self.lat_range = self.press_range = None
self.x_lo = self.x_hi = self.y_lo = self.y_hi = self.z_lo = self.z_hi = None
self.update(press_range=press_range, lon_range=lon_range, lat_range=lat_range)
def __enter__(self):
# Open the dataset and assign it to self.dataset
self.dataset = xr.open_dataset(self.filename)
return self
def __exit__(self, exc_type, exc_value, exc_traceback):
# Close the dataset before exiting
self.dataset.close()
def update(self, press_range=None, lon_range=None, lat_range=None):
self._calc_indexes(press_range=press_range, lon_range=lon_range, lat_range=lat_range)
def _calc_indexes(self, press_range=None, lon_range=None, lat_range=None):
if lon_range is not None and lon_range != self.lon_range:
self.lon_range = lon_range
lon_lo = lon_range[0]
lon_hi = lon_range[1]
if lon360: # convert -180/+180 to 0,360
if lon_lo < 0:
lon_lo += 360
if lon_hi < 0:
lon_hi += 360
self.x_lo = value_to_index(lon_coords, lon_lo)
self.x_hi = value_to_index(lon_coords, lon_hi)
elif self.lon_range is None:
self.x_lo, self.x_hi = 0, NX
if lat_range is not None and lat_range != self.lat_range:
self.lat_range = lat_range
lat_lo = lat_range[0]
lat_hi = lat_range[1]
self.y_lo = value_to_index(lat_coords, lat_lo)
self.y_hi = value_to_index(lat_coords, lat_hi)
elif self.lat_range is None:
self.y_lo, self.y_hi = 0, NY
if press_range is not None and press_range != self.press_range:
self.press_range = press_range
self.z_lo = value_to_index(plevs, press_range[0])
self.z_hi = value_to_index(plevs, press_range[1])
elif self.press_range is None:
self.z_lo, self.z_hi = 0, NZ
def get_volume(self, fld_name, unit_str):
nda = self.dataset[fld_name].values
sub_nda = nda[self.y_lo:self.y_hi, self.x_lo:self.x_hi, self.z_lo:self.z_hi]
xra = xr.DataArray(sub_nda, dims=['Latitude', 'Longitude', 'Pressure'],
coords={"Latitude": lat_coords[self.y_lo:self.y_hi],
"Longitude": lon_coords[self.x_lo:self.x_hi],
"Pressure": plevs[self.z_lo:self.z_hi]},
attrs={"description": fld_name, "units": unit_str})
return xra
def volume_np_to_xr(self, nda, dims):
xra = xr.DataArray(nda, dims=dims,
coords={"Latitude": lat_coords[self.y_lo:self.y_hi],
"Longitude": lon_coords[self.x_lo:self.x_hi],
"Pressure": plevs[self.z_lo:self.z_hi]})
return xra
def get_horz_layer(xr_dataset, fld_name, press, lon_range=None, lat_range=None):
p_idx = value_to_index(plevs, press)
x_lo, x_hi = 0, NX
y_lo, y_hi = 0, NY
if lon_range is not None:
lon_lo = lon_range[0]
lon_hi = lon_range[1]
lat_lo = lat_range[0]
lat_hi = lat_range[1]
if lon360:
if lon_lo < 0:
lon_lo += 360
if lon_hi < 0:
lon_hi += 360
x_lo = value_to_index(lon_coords, lon_lo)
x_hi = value_to_index(lon_coords, lon_hi)
y_lo = value_to_index(lat_coords, lat_lo)
y_hi = value_to_index(lat_coords, lat_hi)
nda = xr_dataset[fld_name].values
sub_nda = nda[y_lo:y_hi, x_lo:x_hi, p_idx]
xra = xr.DataArray(sub_nda, dims=['latitude', 'longitude'],
coords={"latitude": lat_coords[y_lo:y_hi], "longitude": lon_coords[x_lo:x_hi]},
attrs={"description": fld_name, "units": 'm/s'})
return xra
def get_horz_layer_s(xr_dataset, fld_names, press, lon_range=None, lat_range=None):
p_idx = value_to_index(plevs, press)
x_lo = 0
x_hi = NX
y_lo = 0
y_hi = NY
if lon_range is not None:
lon_lo = lon_range[0]
lon_hi = lon_range[1]
lat_lo = lat_range[0]
lat_hi = lat_range[1]
if lon360:
if lon_lo < 0:
lon_lo += 360
if lon_hi < 0:
lon_hi += 360
x_lo = value_to_index(lon_coords, lon_lo)
x_hi = value_to_index(lon_coords, lon_hi)
y_lo = value_to_index(lat_coords, lat_lo)
y_hi = value_to_index(lat_coords, lat_hi)
sub_fld_s = []
for fld_name in fld_names:
fld = xr_dataset[fld_name]
sub_fld = fld[y_lo:y_hi, x_lo:x_hi, p_idx]
sub_fld_s.append(sub_fld)
sub_fld = xr.concat(sub_fld_s, 'channel')
sub_fld = sub_fld.assign_coords(channel=fld_names, fakeDim2=lon_coords[x_lo:x_hi], fakeDim1=lat_coords[y_lo:y_hi])
return sub_fld
def get_time_interpolated_layer(xr_dataset_s, time_s, time, fld_name, press, lon_range=None, lat_range=None, method='linear'):
layer_s = []
for ds in xr_dataset_s:
lyr = get_horz_layer(ds, fld_name, press, lon_range=lon_range, lat_range=lat_range)
layer_s.append(lyr)
lyr = xr.concat(layer_s, 'time')
lyr = lyr.assign_coords(time=time_s)
intrp_lyr = lyr.interp(time=time, method=method)
return intrp_lyr
def get_time_interpolated_layer_s(xr_dataset_s, time_s, time, fld_name_s, press, lon_range=None, lat_range=None, method='linear'):
layer_s = []
for ds in xr_dataset_s:
lyr = get_horz_layer_s(ds, fld_name_s, press, lon_range=lon_range, lat_range=lat_range)
layer_s.append(lyr)
lyr = xr.concat(layer_s, 'time')
lyr = lyr.assign_coords(time=time_s)
intrp_lyr = lyr.interp(time=time, method='linear')
return intrp_lyr
def get_vert_profile(xr_dataset, fld_name, lons, lats, method='linear'):
if lon360: # convert -180/+180 to 0,360
lons = np.where(lons < 0, lons + 360, lons)
fld = xr_dataset[fld_name]
fld = fld.assign_coords(fakeDim2=lon_coords, fakeDim1=lat_coords, fakeDim0=plevs)
dim2 = xr.DataArray(lons, dims='k')
dim1 = xr.DataArray(lats, dims='k')
intrp_fld = fld.interp(fakeDim1=dim1, fakeDim2=dim2, fakeDim0=plevs, method=method)
return intrp_fld
def get_vert_profile_s(xr_dataset, fld_name_s, lons, lats, method='linear'):
if lon360: # convert -180,+180 to 0,360
lons = np.where(lons < 0, lons + 360, lons)
fld_s = []
for fld_name in fld_name_s:
fld = xr_dataset[fld_name]
fld = fld.assign_coords(fakeDim2=lon_coords, fakeDim1=lat_coords, fakeDim0=plevs)
fld_s.append(fld)
fld = xr.concat(fld_s, 'fld_dim')
dim2 = xr.DataArray(lons, dims='k')
dim1 = xr.DataArray(lats, dims='k')
intrp_fld = fld.interp(fakeDim1=dim1, fakeDim2=dim2, fakeDim0=plevs, method=method)
return intrp_fld
def get_point(xr_dataset, fld_name, lons, lats, pres_s=None, method='nearest'):
if lon360: # convert -180/+180 to 0,360
lons = np.where(lons < 0, lons + 360, lons) # convert -180,180 to 0,360
lat_coords = np.linspace(-90, 90, xr_dataset.fakeDim1.size)
lon_coords = np.linspace(0, 359.5, xr_dataset.fakeDim2.size)
fld = xr_dataset[fld_name]
if pres_s is not None:
fld = fld.assign_coords(fakeDim2=lon_coords, fakeDim1=lat_coords, fakeDim0=plevs)
else:
fld = fld.assign_coords(fakeDim2=lon_coords, fakeDim1=lat_coords)
dim1 = xr.DataArray(lats, dims='k')
dim2 = xr.DataArray(lons, dims='k')
if pres_s is not None:
dim0 = xr.DataArray(pres_s, dims='k')
intrp_fld = fld.interp(fakeDim0=dim0, fakeDim1=dim1, fakeDim2=dim2, method=method)
else:
intrp_fld = fld.interp(fakeDim1=dim1, fakeDim2=dim2, method=method)
return intrp_fld
def get_point_s(xr_dataset, fld_name_s, lons, lats, pres_s=None, method='nearest'):
if lon360: # convert -180/+180 to 0,360
lons = np.where(lons < 0, lons + 360, lons) # convert -180,180 to 0,360
lat_coords = np.linspace(-90, 90, xr_dataset.fakeDim1.size)
lon_coords = np.linspace(0, 359.5, xr_dataset.fakeDim2.size)
fld_s = []
for fld_name in fld_name_s:
fld = xr_dataset[fld_name]
if pres_s is not None:
fld = fld.assign_coords(fakeDim2=lon_coords, fakeDim1=lat_coords, fakeDim0=plevs)
else:
fld = fld.assign_coords(fakeDim2=lon_coords, fakeDim1=lat_coords)
fld_s.append(fld)
fld = xr.concat(fld_s, 'fld_dim')
dim1 = xr.DataArray(lats, dims='k')
dim2 = xr.DataArray(lons, dims='k')
if pres_s is not None:
dim0 = xr.DataArray(pres_s, dims='k')
intrp_fld = fld.interp(fakeDim0=dim0, fakeDim1=dim1, fakeDim2=dim2, method=method)
else:
intrp_fld = fld.interp(fakeDim1=dim1, fakeDim2=dim2, method=method)
return intrp_fld
def get_time_interpolated_vert_profile(xr_dataset_s, time_s, fld_name, time, lons, lats, method='linear'):
prof_s = []
for ds in xr_dataset_s:
vp = get_vert_profile(ds, fld_name, lons, lats, method=method)
prof_s.append(vp)
prof = xr.concat(prof_s, 'time')
prof = prof.assign_coords(time=time_s)
intrp_prof = prof.interp(time=time, method=method)
intrp_prof = intrp_prof.values
return intrp_prof
def get_time_interpolated_vert_profile_s(xr_dataset_s, time_s, fld_name_s, time, lons, lats, method='linear'):
prof_s = []
for ds in xr_dataset_s:
vp = get_vert_profile_s(ds, fld_name_s, lons, lats, method=method)
prof_s.append(vp)
prof = xr.concat(prof_s, 'time')
prof = prof.assign_coords(time=time_s)
intrp_prof = prof.interp(time=time, method=method)
intrp_prof = intrp_prof.values
return intrp_prof
def get_time_interpolated_point(ds_0, ds_1, time0, time1, fld_name, time, lons, lats, method='linear'):
vals_0 = get_point(ds_0, fld_name, lons, lats)
vals_1 = get_point(ds_1, fld_name, lons, lats)
vals = xr.concat([vals_0, vals_1], 'time')
vals = vals.assign_coords(time=[time0, time1])
intrp_vals = vals.interp(time=time, method=method)
intrp_vals = intrp_vals.values
return intrp_vals
def get_time_interpolated_point_s(xr_dataset_s, time_s, fld_name_s, time, lons, lats, method='linear'):
pt_s = []
for ds in xr_dataset_s:
pt = get_point_s(ds, fld_name_s, lons, lats, method=method)
pt_s.append(pt)
pt = xr.concat(pt_s, 'time')
pt = pt.assign_coords(time=time_s)
intrp_pt = pt.interp(time=time, method=method)
intrp_pt = intrp_pt.values
return intrp_pt
def get_time_interpolated_voxel(xr_dataset_s, time_s, time, fld_name, lon, lat, press, x_width=3, y_width=3, z_width=3, method='linear'):
vox_s = []
for ds in xr_dataset_s:
vox = get_voxel(ds, fld_name, lon, lat, press, x_width=x_width, y_width=y_width, z_width=z_width)
vox_s.append(vox)
vox = xr.concat(vox_s, 'time')
vox = vox.assign_coords(time=time_s)
intrp_vox = vox.interp(time=time, method=method)
return intrp_vox
def get_voxel(xr_dataset, fld_name, lon, lat, press, x_width=3, y_width=3, z_width=3):
if lon360:
if lon < 0:
lon += 360
fld = xr_dataset[fld_name]
p_c = value_to_index(plevs, press)
x_c = value_to_index(lon_coords, lon)
y_c = value_to_index(lat_coords, lat)
y_h = int(y_width / 2)
x_h = int(x_width / 2)
p_h = int(z_width / 2)
y_start = y_c - y_h
x_start = x_c - x_h
z_start = p_c - p_h
if y_start < 0 or x_start < 0 or z_start < 0:
return None
y_stop = y_c + y_h + 1
x_stop = x_c + x_h + 1
z_stop = p_c + p_h + 1
if y_stop > NY-1 or x_stop > NX-1 or z_stop > NZ-1:
return None
sub_fld = fld[y_start:y_stop, x_start:x_stop, z_start:z_stop]
sub_fld = sub_fld.expand_dims('channel')
sub_fld = sub_fld.assign_coords(channel=[fld_name], fakeDim2=lon_coords[x_start:x_stop],
fakeDim1=lat_coords[y_start:y_stop], fakeDim0=plevs[z_start:z_stop])
return sub_fld
def get_time_interpolated_voxel_s(xr_dataset_s, time_s, time, fld_name_s, lon, lat, press, x_width=3, y_width=3, z_width=3, method='linear'):
vox_s = []
for ds in xr_dataset_s:
vox = get_voxel_s(ds, fld_name_s, lon, lat, press, x_width=x_width, y_width=y_width, z_width=z_width)
vox_s.append(vox)
vox = xr.concat(vox_s, 'time')
vox = vox.assign_coords(time=time_s)
intrp_vox = vox.interp(time=time, method=method)
return intrp_vox
def get_voxel_s(xr_dataset, fld_name_s, lon, lat, press, x_width=3, y_width=3, z_width=3):
if lon360:
if lon < 0:
lon += 360
p_c = value_to_index(plevs, press)
x_c = value_to_index(lon_coords, lon)
y_c = value_to_index(lat_coords, lat)
y_h = int(y_width / 2)
x_h = int(x_width / 2)
p_h = int(z_width / 2)
y_start = y_c - y_h
x_start = x_c - x_h
z_start = p_c - p_h
if y_start < 0 or x_start < 0 or z_start < 0:
return None
y_stop = y_c + y_h + 1
x_stop = x_c + x_h + 1
z_stop = p_c + p_h + 1
if y_stop > NY-1 or x_stop > NX-1 or z_stop > NZ-1:
return None
sub_fld_s = []
for name in fld_name_s:
fld = xr_dataset[name]
sub_fld = fld[y_start:y_stop, x_start:x_stop, z_start:z_stop]
sub_fld_s.append(sub_fld)
sub_fld = xr.concat(sub_fld_s, 'channel')
sub_fld = sub_fld.assign_coords(channel=fld_name_s, fakeDim2=lon_coords[x_start:x_stop],
fakeDim1=lat_coords[y_start:y_stop], fakeDim0=plevs[z_start:z_stop])
return sub_fld
def get_volume(xr_dataset, fld_name, unit_str, press_range=None, lon_range=None, lat_range=None):
x_lo, x_hi = 0, NX
y_lo, y_hi = 0, NY
z_lo, z_hi = 0, NZ
if lon_range is not None:
lon_lo = lon_range[0]
lon_hi = lon_range[1]
if lon360:
if lon_lo < 0:
lon_lo += 360
if lon_hi < 0:
lon_hi += 360
x_lo = value_to_index(lon_coords, lon_lo)
x_hi = value_to_index(lon_coords, lon_hi)
if lat_range is not None:
lat_lo = lat_range[0]
lat_hi = lat_range[1]
y_lo = value_to_index(lat_coords, lat_lo)
y_hi = value_to_index(lat_coords, lat_hi)
if press_range is not None:
z_lo = value_to_index(plevs, press_range[0])
z_hi = value_to_index(plevs, press_range[1])
nda = self.dataset[fld_name].values
sub_nda = nda[y_lo:y_hi, x_lo:x_hi, z_lo:z_hi]
xra = xr.DataArray(sub_nda, dims=['Latitude', 'Longitude', 'Pressure'],
coords={"Latitude": lat_coords[y_lo:y_hi], "Longitude": lon_coords[x_lo:x_hi], "Pressure": plevs[z_lo:z_hi]},
attrs={"description": fld_name, "units": unit_str})
return xra
def volume_np_to_xr(nda, dims, press_range=None, lon_range=None, lat_range=None):
x_lo, x_hi = 0, NX
y_lo, y_hi = 0, NY
z_lo, z_hi = 0, NZ
if lon_range is not None:
lon_lo = lon_range[0]
lon_hi = lon_range[1]
if lon360:
if lon_lo < 0:
lon_lo += 360
if lon_hi < 0:
lon_hi += 360
x_lo = value_to_index(lon_coords, lon_lo)
x_hi = value_to_index(lon_coords, lon_hi)
if lat_range is not None:
lat_lo = lat_range[0]
lat_hi = lat_range[1]
y_lo = value_to_index(lat_coords, lat_lo)
y_hi = value_to_index(lat_coords, lat_hi)
if press_range is not None:
z_lo = value_to_index(plevs, press_range[0])
z_hi = value_to_index(plevs, press_range[1])
xra = xr.DataArray(nda, dims=dims,
coords={"Latitude": lat_coords[y_lo:y_hi], "Longitude": lon_coords[x_lo:x_hi], "Pressure": plevs[z_lo:z_hi]})
return xra